Generalized Uniformly Optimal Methods for Nonlinear Programming

In this paper, we present a generic framework to extend existing uniformly optimal convex programming algorithms to solve more general nonlinear, possibly nonconvex, optimization problems. The basic idea is to incorporate a local search step (gradient descent or Quasi-Newton iteration) into these uniformly optimal convex programming methods, and then enforce a monotone decreasing property of … Read more

Noisy Euclidean distance realization: robust facial reduction and the Pareto frontier

We present two algorithms for large-scale low-rank Euclidean distance matrix completion problems, based on semidefinite optimization. Our first method works by relating cliques in the graph of the known distances to faces of the positive semidefinite cone, yielding a combinatorial procedure that is provably robust and parallelizable. Our second algorithm is a first order method … Read more

On Theoretical and Numerical Aspects of the Shape Sensitivity Analysis for the 3D Time-dependent Maxwell’s Equations

We propose a novel approach using shape derivatives to solve inverse optimization problems governed by Maxwell’s equations, focusing on identifying hidden geometric objects in a predefined domain. The target functional is of tracking type and determines the distance between the solution of a 3D time-dependent Maxwell problem and given measured data in an $L_2$-norm. Minimization … Read more

On the solution uniqueness characterization in the L1 norm and polyhedral gauge recovery

This paper first proposes another proof of the \textit{necessary and sufficient conditions of solution uniqueness in 1-norm minimization} given recently by H. Zhang, W. Yin, and L. Cheng. The analysis avoids the need of the surjectivity assumption made by these authors and should be mainly appealing by its short length (it can therefore be proposed … Read more

Uniqueness of Market Equilibrium on a Network: A Peak-Load Pricing Approach

In this paper we establish conditions under which uniqueness of market equilibrium is obtained in a setup where prior to trading of electricity, transmission capacities between different market regions are fixed. In our setup, firms facing fluctuating demand decide on the size and location of production facilities. They make production decisions constrained by the invested … Read more

Inner Approximations of Completely Positive Reformulations of Mixed Binary Quadratic Programs: A Unified Analysis

Every quadratic programming problem with a mix of continuous and binary variables can be equivalently reformulated as a completely positive optimization problem, i.e., a linear optimization problem over the convex but computationally intractable cone of completely positive matrices. In this paper, we focus on general inner approximations of the cone of completely positive matrices on … Read more

A Polyhedral Study of the Integrated Minimum-Up/-Down Time and Ramping Polytope

In this paper, we consider the polyhedral structure of the integrated minimum-up/-down time and ramping polytope, which has broad applications in power generation scheduling problems. The generalized polytope we studied includes minimum-up/-down time, generation ramp-up/-down rate, logical, and generation upper/lower bound constraints. We derive strong valid inequalities for this polytope by utilizing its specialized structures. … Read more

A New Trust Region Method with Simple Model for Large-Scale Optimization

In this paper a new trust region method with simple model for solving large-scale unconstrained nonlinear optimization problems is proposed. By using the generalized weak quasi-Newton equations, we derive several schemes to determine the appropriate scalar matrix as the Hessian approximation. Under some reasonable conditions and the framework of the trust-region method, the global convergence … Read more

A general inertial proximal point algorithm for mixed variational inequality problem

In this paper, we first propose a general inertial \emph{proximal point algorithm} (PPA) for the mixed \emph{variational inequality} (VI) problem. Based on our knowledge, without stronger assumptions, convergence rate result is not known in the literature for inertial type PPAs. Under certain conditions, we are able to establish the global convergence and nonasymptotic $O(1/k)$ convergence … Read more

Inertial Proximal ADMM for Linearly Constrained Separable Convex Optimization

The \emph{alternating direction method of multipliers} (ADMM) is a popular and efficient first-order method that has recently found numerous applications, and the proximal ADMM is an important variant of it. The main contributions of this paper are the proposition and the analysis of a class of inertial proximal ADMMs, which unify the basic ideas of … Read more