Stochastic Real-Time Scheduling of Wind-thermal Generation Units in an Electric Utility

The objective of dynamic economic dispatch (DED) problem is to find the optimal dispatch of generation units in a given operation horizon to supply a pre-specified demand, while satisfying a set of constraints. In this paper, an efficient method based on Optimality Condition Decomposition (OCD) technique is proposed to solve the DED problem in real-time … Read more

Partially Adaptive Stochastic Optimization for Electric Power Generation Expansion Planning

Electric Power Generation Expansion Planning (GEP) is the problem of determining an optimal construction and generation plan of both new and existing electric power plants to meet future electricity demand. We consider a stochastic optimization approach for this capacity expansion problem under demand and fuel price uncertainty. In a two-stage stochastic optimization model for GEP, … Read more

Real Options: A Survey

This survey paper provides an overview of real options, in particular the connection with financial options, valuation methods (analytical methods vs numerical methods based on simulation, lattice approximations to stochastic processes and finite-difference methods) and a wide array of application areas, from R&D to operations management to renewable energy project selection. CitationTechnical report, Lehigh University, … Read more

A Counterexample to “Threshold Boolean form for joint probabilistic constraints with random technology matrix”

Recently, in the paper “Threshold Boolean form for joint probabilistic constraints with random technology matrix” (Math. Program. 147:391–427, 2014), Kogan and Lejeune proposed a set of mixed-integer programming formulations for probabilistically constrained stochastic programs having random constraint matrix and finite support distribution. We show that the proposed formulations do not in general correctly model such … Read more

Solving ill-posed bilevel programs

This paper deals with ill-posed bilevel programs, i.e., problems admitting multiple lower-level solutions for some upper-level parameters. Many publications have been devoted to the standard optimistic case of this problem, where the difficulty is essentially moved from the objective function to the feasible set. This new problem is simpler but there is no guaranty to … Read more

Maximizing a class of submodular utility functions with constraints

Motivated by stochastic 0-1 integer programming problems with an expected utility objective, we study the mixed-integer nonlinear set: $P = \cset{(w,x)\in \reals \times \set{0,1}^N}{w \leq f(a’x + d), b’x \leq B}$ where $N$ is a positive integer, $f:\reals \mapsto \reals$ is a concave function, $a, b \in \reals^N$ are nonnegative vectors, $d$ is a real … Read more

A Preconditioner for a Primal-Dual Newton Conjugate Gradients Method for Compressed Sensing Problems

In this paper we are concerned with the solution of Compressed Sensing (CS) problems where the signals to be recovered are sparse in coherent and redundant dictionaries. We extend a primal-dual Newton Conjugate Gradients (pdNCG) method for CS problems. We provide an inexpensive and provably effective preconditioning technique for linear systems using pdNCG. Numerical results … Read more

Achieving Cost-Effective Power Grid Hardening through Transmission Network Topology Control

Vulnerability of power grid is a critical issue in power industry. In order to understand and reduce power grid vulnerability under threats, existing research often employs defender-attacker-defender (DAD) models to derive effective protection plans and evaluate grid performances under various contingencies. Transmission line switching (also known as topology control) is an effective operation to mitigate … Read more

A polynomial algorithm for linear optimization which is strongly polynomial under certain conditions on optimal solutions

This paper proposes a polynomial algorithm for linear programming which is strongly polynomial for linear optimization problems $\min\{c^Tx : Ax = b, x\ge {\bf 0}\}$ having optimal solutions where each non-zero component $x_j$ belongs to an interval of the form $[\alpha_j, \alpha_j\cdot 2^{p(n)}],$ where $\alpha_j$ is some positive value and $p(n)$ is a polynomial of … Read more

Global convergence of the Heavy-ball method for convex optimization

This paper establishes global convergence and provides global bounds of the convergence rate of the Heavy-ball method for convex optimization problems. When the objective function has Lipschitz-continuous gradient, we show that the Cesa ́ro average of the iterates converges to the optimum at a rate of $O(1/k)$ where k is the number of iterations. When … Read more