EXPLOITING SYMMETRY IN COPOSITIVE PROGRAMS VIA SEMIDEFINITE HIERARCHIES

Copositive programming is a relative young field which has evolved into a highly active research area in mathematical optimization. An important line of research is to use semidefinite programming to approximate conic programming over the copositive cone. Two major drawbacks of this approach are the rapid growth in size of the resulting semidefinite programs, and … Read more

A refined error analysis for fixed-degree polynomial optimization over the simplex

We consider fixed-degree polynomial optimization over the simplex. This problem is well known to be NP-hard, since it contains the maximum stable set problem in combinatorial optimization as a special case. In this paper, we consider a known upper bound by taking the minimum value on a regular grid, and a known lower bound based … Read more

Incremental Network Design with Maximum Flows

We study an incremental network design problem, where in each time period of the planning horizon an arc can be added to the network and a maximum flow problem is solved, and where the objective is to maximize the cumulative flow over the entire planning horizon. After presenting two mixed integer programming (MIP) formulations for … Read more

A Comprehensive Analysis of Polyhedral Lift-and-Project Methods

We consider lift-and-project methods for combinatorial optimization problems and focus mostly on those lift-and-project methods which generate polyhedral relaxations of the convex hull of integer solutions. We introduce many new variants of Sherali–Adams and Bienstock–Zuckerberg operators. These new operators fill the spectrum of polyhedral lift-and-project operators in a way which makes all of them more … Read more

A Block Coordinate Variable Metric Forward-Backward Algorithm

A number of recent works have emphasized the prominent role played by the Kurdyka-Lojasiewicz inequality for proving the convergence of iterative algorithms solving possibly nonsmooth/nonconvex optimization problems. In this work, we consider the minimization of an objective function satisfying this property, which is a sum of a non necessarily convex differentiable function and a non … Read more

Iterative Reweighted Linear Least Squares for Exact Penalty Subproblems on Product Sets

We present two matrix-free methods for solving exact penalty subproblems on product sets that arise when solving large-scale optimization problems. The first approach is a novel iterative reweighting algorithm (IRWA), which iteratively minimizes quadratic models of relaxed subproblems while automatically updating a relaxation vector. The second approach is based on alternating direction augmented Lagrangian (ADAL) … Read more

An Interior-Point Trust-Funnel Algorithm for Nonlinear Optimization

We present an interior-point trust-funnel algorithm for solving large-scale nonlinear optimization problems. The method is based on an approach proposed by Gould and Toint (Math Prog 122(1):155–196, 2010) that focused on solving equality constrained problems. Our method is similar in that it achieves global convergence guarantees by combining a trust-region methodology with a funnel mechanism, … Read more

Uniqueness Conditions for A Class of $\ell_0hBcMinimization Problems

We consider a class of $\ell_0$-minimization problems, which is to search for the partial sparsest solution to an underdetermined linear system with additional constraints. We introduce several concepts, including $l_p$-induced quasi-norm ($0

Equivalence and Strong Equivalence between Sparsest and Least $\ell_1hBcNorm Nonnegative Solutions of Linear Systems and Their Application

Many practical problems can be formulated as $\ell_0$-minimization problems with nonnegativity constraints, which seek the sparsest nonnegative solutions to underdetermined linear systems. Recent study indicates that $\ell_1$-minimization is efficient for solving some classes of $\ell_0$-minimization problems. From a mathematical point of view, however, the understanding of the relationship between $\ell_0$- and $\ell_1$-minimization remains incomplete. In … Read more

On local convergence of the method of alternating projections

The method of alternating projections is a classical tool to solve feasibility problems. Here we prove local convergence of alternating projections between subanalytic sets A,B under a mild regularity hypothesis on one of the sets. We show that the speed of convergence is O$(k^{-\rho})$ for some $\rho\in(0,\infty)$. CitationUniversité de Toulouse, Institut de Mathématiques, december 19, … Read more