Branch-and-Price Guided Search for Integer Programs with an Application to the Multicommodity Fixed Charge Network Flow Problem

We develop an exact algorithm for integer programs that uses restrictions of the problem to produce high-quality solutions quickly. Column generation is used both for generating these problem restrictions and for producing bounds on the value of the optimal solution. The performance of the algorithm is greatly enhanced by using structure, such as arises in … Read more

Exact Penalization, Level Function Method and Modified Cutting-Plane Method for Stochastic Programs with Second Order Stochastic Dominance Constraints

Level function methods and cutting plane methods have been recently proposed to solve stochastic programs with stochastic second order dominance (SSD) constraints. A level function method requires an exact penalization setup because it can only be applied to the objective function, not the constraints. Slater constraint qualification (SCQ) is often needed for deriving exact penalization. … Read more

On the convergence of the modified Levenberg-Marquardt method with a nonmonotone second order Armijo type line search

Recently, Fan [4, Math. Comput., 81 (2012), pp. 447-466] proposed a modified Levenberg-Marquardt (MLM) method for nonlinear equations. Using a trust region technique, global and cubic convergence of the MLM method is proved [4] under the local error bound condition, which is weaker than nonsingularity. The purpose of the paper is to investigate the convergence … Read more

Strongly Polynomial Primal-Dual Algorithms for Concave Cost Combinatorial Optimization Problems

We introduce an algorithm design technique for a class of combinatorial optimization problems with concave costs. This technique yields a strongly polynomial primal-dual algorithm for a concave cost problem whenever such an algorithm exists for the fixed-charge counterpart of the problem. For many practical concave cost problems, the fixed-charge counterpart is a well-studied combinatorial optimization … Read more

The Lagrangian Relaxation for the Combinatorial Integral Approximation Problem

We are interested in methods to solve mixed-integer nonlinear optimal control problems (MIOCPs) constrained by ordinary di erential equations and combinatorial constraints on some of the control functions. To solve these problems we use a rst discretize, then opti- mize approach to get a specially structured mixed-integer nonlinear program (MINLP). We decompose this MINLP into an … Read more

D-ADMM: A Communication-Efficient Distributed Algorithm For Separable Optimization

We propose a distributed algorithm, named D-ADMM, for solving separable optimization problems in networks of interconnected nodes or agents. In a separable optimization problem, the cost function is the sum of all the agents’ private cost functions, and the constraint set is the intersection of all the agents’ private constraint sets. We require the private … Read more

Improved Load Plan Design Through Integer Programming Based Local Search

We present integer programming models of the service network design problem faced by less-than-truckload (LTL) freight transportation carriers, and a solution approach for the large-scale instances that result in practical applications. To accurately represent freight consolidation opportunities, the models use a fine discretization of time. Furthermore, the models simultaneously route freight and empty trailers, and … Read more

NUMERICAL OPTIMIZATION METHODS FOR BLIND DECONVOLUTION

This paper describes a nonlinear least squares framework to solve a separable nonlinear ill-posed inverse problems that arises in blind deconvolution. It is shown that with proper constraints and well chosen regularization parameters, it is possible to obtain an objective function that is fairly well behaved and the nonlinear minimization problem can be effectively solved … Read more

A Fast Algorithm for Constructing Efficient Event-Related fMRI Designs

We propose a novel, ecient approach for obtaining high-quality experimental designs for event-related functional magnetic resonance imaging (ER-fMRI). Our approach combines a greedy hillclimbing algorithm and a cyclic permutation method. When searching for optimal ER-fMRI designs, the proposed approach focuses only on a promising restricted class of designs with equal frequency of occurrence across stimulus … Read more

On spectral properties of steepest descent methods

In recent years it has been made more and more clear that the critical issue in gradient methods is the choice of the step length, whereas using the gradient as search direction may lead to very effective algorithms, whose surprising behaviour has been only partially explained, mostly in terms of the spectrum of the Hessian … Read more