Local Minima and Convergence in Low-Rank Semidefinite Programming

The low-rank semidefinite programming problem (LRSDP_r) is a restriction of the semidefinite programming problem (SDP) in which a bound r is imposed on the rank of X, and it is well known that LRSDP_r is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDP_r and … Read more

Generalized Lagrangian Duals and Sums of Squares Relaxations of Sparse Polynomial Optimization Problems

Sequences of generalized Lagrangian duals and their SOS (sums of squares of polynomials) relaxations for a POP (polynomial optimization problem) are introduced. Sparsity of polynomials in the POP is used to reduce the sizes of the Lagrangian duals and their SOS relaxations. It is proved that the optimal values of the Lagrangian duals in the … Read more

A robust SQP method for mathematical programs with linear complementarity constraints

The relationship between the mathematical program with linear complementarity constraints (MPCC) and its inequality relaxation is studied. A new sequential quadratic programming (SQP) method is presented for solving the MPCC based on this relationship. A certain SQP technique is introduced to deal with the possible infeasibility of quadratic programming subproblems. Global convergence results are derived … Read more

Network Reinforcement

We give an algorithm for the following problem: given a graph $G=(V,E)$ with edge-weights and a nonnegative integer $k$, find a minimum cost set of edges that contains $k$ disjoint spanning trees. This also solves the following {\it reinforcement problem}: given a network, a number $k$ and a set of candidate edges, each of them … Read more

A Pivotting Procedure for a Class of Second-Order Cone Programming

We propose a pivotting procedure for a class of Second-Order Cone Programming (SOCP) having one second-order cone. We introduce a dictionary, basic variables, nonbasic variables, and other necessary notions to define a pivot for the class of SOCP. In a pivot, two-dimensional SOCP subproblems are solved to decide which variables should be entering to or … Read more

Speeding up dynamic shortest path algorithms

Dynamic shortest path algorithms update the shortest paths to take into account a change in an edge weight. This paper describes a new technique that allows the reduction of heap sizes used by several dynamic shortest path algorithms. For unit weight change, the updates can be done without heaps. These reductions almost always reduce the … Read more

On Tail Decay and Moment Estimates of a Condition Number for Random Linear Conic Systems

In this paper we study the distribution tails and the moments of a condition number which arises in the study of homogeneous systems of linear inequalities. We consider the case where this system is defined by a Gaussian random matrix and characterise the exact decay rates of the distribution tails, improve the existing moment estimates, … Read more

The Bundle Method in Combinatorial Optimization

We propose a dynamic version of the bundle method to get approximate solutions to semidefinite programs with a nearly arbitrary number of linear inequalities. Our approach is based on Lagrangian duality, where the inequalities are dualized, and only a basic set of constraints is maintained explicitly. This leads to function evaluations requiring to solve a … Read more

A masked spectral bound for maximum-entropy sampling

We introduce a new masked spectral bound for the maximum-entropy sampling problem. This bound is a continuous generalization of the very effective spectral partition bound. Optimization of the masked spectral bound requires the minimization of a nonconvex, nondifferentiable function over a semidefiniteness constraint. We describe a nonlinear affine scaling algorithm to approximately minimize the bound. … Read more

A Semidefinite Programming Approach for the Nearest Correlation Matrix Problem

The nearest \cm\ problem is to find a positive semidefinite matrix with unit diagonal that is nearest in the Frobenius norm to a given symmetric matrix $A$. This problem can be formulated as an optimization problem with a quadratic objective function and semidefinite programming constraints. Using such a formulation, we derive and test a primal-dual … Read more