qpBAMM: a parallelizable ADMM approach for block-structured quadratic programs
ArticleDownload View PDF
ArticleDownload View PDF
In this paper, we focus on a linearly constrained composite minimization problem whose objective function is possibly nonsmooth and nonconvex. Unlike the traditional construction of augmented Lagrangian function, we provide a proximal-perturbed augmented Lagrangian and then develop a new Bregman Alternating Direction Method of Multipliers (ADMM). Under mild assumptions, we show that the novel augmented … Read more
Decomposition using consensus ADMM can be used to allow parallelization efficiencies or for reasons related to information security. In either case,the input data may be uncertain and we give a decomposition algorithm. ArticleDownload View PDF
We study the problem of learning a partially observed matrix under the low rank assumption in the presence of fully observed side information that depends linearly on the true underlying matrix. This problem consists of an important generalization of the Matrix Completion problem, a central problem in Statistics, Operations Research and Machine Learning, that arises … Read more
Recently, semidefinite programming performance estimation has been employed as a strong tool for the worst-case performance analysis of first order methods. In this paper, we derive new non-ergodic convergence rates for the alternating direction method of multipliers (ADMM) by using performance estimation. We give some examples which show the exactness of the given bounds. We … Read more
This paper studies a statistical learning model where the model coefficients have a pre-determined non-overlapping group sparsity structure. We consider a combination of a loss function and a regularizer to recover the desired group sparsity patterns, which can embrace many existing works. We analyze the stationary solution of the proposed formulation, obtaining a sufficient condition … Read more
In this paper, an inexact Alternating Direction Method of Multipliers (ADMM) has been proposed for solving the two-block separable convex optimization problem subject to linear equality constraints. The first resulting subproblem is solved inexactly under relative error criterion, while another subproblem called regularization problem is solved inexactly by introducing an indefinite proximal term. Meanwhile, the … Read more
Decarbonization via the integration of renewables poses significant challenges for electric power systems, but also creates new market opportunities. Electric energy storage can take advantage of these opportunities while providing flexibility to power systems that can help address these challenges. We propose a solution method for the optimal control of multiple price-maker electric energy storage … Read more
This short paper describes a simple subgradient-based techniques for deriving bounds on the optimal solution value when using the ADMM to solve convex optimization problems. The technique requires a bound on the magnitude of some optimal solution vector, but is otherwise completely general. Some computational examples using LASSO problems demonstrate that the technique can produce … Read more
This paper derives new inexact variants of the Douglas-Rachford splitting method for maximal monotone operators and the alternating direction method of multipliers (ADMM) for convex optimization. The analysis is based on a new inexact version of the proximal point algorithm that includes both an inertial step and overrelaxation. We apply our new inexact ADMM method … Read more