Benders Decomposition with Adaptive Oracles for Large Scale Optimization

This paper proposes an algorithm to efficiently solve large optimization problems which exhibit a column bounded block-diagonal structure, where subproblems differ in right-hand side and cost coefficients. Similar problems are often tackled using cutting-plane algorithms, which allow for an iterative and decomposed solution of the problem. When solving subproblems is computationally expensive and the set … Read more

Benders Cut Classification via Support Vector Machines for Solving Two-stage Stochastic Programs

We consider Benders decomposition for solving two-stage stochastic programs with complete recourse based on finite samples of the uncertain parameters. We define the Benders cuts binding at the final optimal solution or the ones significantly improving bounds over iterations as valuable cuts. We propose a learning-enhanced Benders decomposition (LearnBD) algorithm, which adds a cut classification … Read more

Avoiding redundant columns by adding classical Benders cuts to column generation subproblems

When solving the linear programming (LP) relaxation of a mixed-integer program (MIP) with column generation, columns might be generated that are not needed to express any integer optimal solution of the MIP. Such columns are called strongly redundant and the dual bound obtained by solving the LP relaxation is potentially stronger if these columns are … Read more

Large-scale Influence Maximization via Maximal Covering Location

Influence maximization aims at identifying a limited set of key individuals in a (social) network which spreads information based on some propagation model and maximizes the number of individuals reached. We show that influence maximization based on the probabilistic independent cascade model can be modeled as a stochastic maximal covering location problem. A reformulation based … Read more

Enhancing large neighbourhood search heuristics for Benders’ decomposition

A general enhancement of the Benders’ decomposition (BD) algorithm can be achieved through the improved use of large neighbourhood search heuristics within mixed-integer programming solvers. While mixed-integer programming solvers are endowed with an array of large neighbourhood search heuristics, few, if any, have been designed for BD. Further, typically the use of large neighbourhood search … Read more

The SCIP Optimization Suite 6.0

The SCIP Optimization Suite provides a collection of software packages for mathematical optimization centered around the constraint integer programming framework SCIP. This paper discusses enhancements and extensions contained in version 6.0 of the SCIP Optimization Suite. Besides performance improvements of the MIP and MINLP core achieved by new primal heuristics and a new selection criterion … Read more

Benders Decomposition for Very Large Scale Partial Set Covering and Maximal Covering Problems

Covering problems constitute an important family of facility location problems. This paper intro- duces a new exact algorithm for two important members of this family: i) the maximal covering location problem, which requires finding a subset of facilities that maximizes the amount of demand covered while respecting a budget constraint on the cost of the … Read more

Exact and heuristic algorithms for finding envy-free allocations in food rescue pickup and delivery logistics

Food rescue organizations collect and re-distribute surplus perishable food for hunger relief. We propose novel approaches to address this humanitarian logistics challenge and find envy-free allocations of the rescued food together with least travel cost routes. We show that this food rescue and delivery problem is NP-hard and we present a cutting-plane algorithm based on … Read more

A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty

We focus on a problem of locating recharging stations in one-way station based electric car sharing systems which operate under demand uncertainty. We model this problem as a mixed integer stochastic program and develop a Benders decomposition algorithm based on this formulation. We integrate a stabilization procedure to our algorithm and conduct a large-scale experimental … Read more

A Branch-and-Benders-Cut Algorithm for the Road Restoration Crew Scheduling and Routing Problem

Extreme events such as disasters cause partial or total disruption of basic services such as water, energy, communication and transportation. In particular, roads can be damaged or blocked by debris, thereby obstructing access to certain affected areas. Thus, restoration of the damaged roads is necessary to evacuate victims and distribute emergency commodities to relief centers … Read more