Interdiction Branching

This paper introduces interdiction branching, a new branching method for binary integer programs that is designed to overcome the difficulties encountered in solving problems for which branching on variables is inherently weak. Unlike traditional methods, selection of the disjunction in interdiction branching takes into account the best feasible solution found so far. In particular, the … Read more

The Reliable Hub-and-spoke Design Problem: Models and Algorithms

This paper presents a study on reliable single and multiple allocation hub-and-spoke network design problems where disruptions at hubs and the resulting hub unavailability can be mitigated by backup hubs and alternative routes. It builds nonlinear mixed integer programming models and presents linearized formulas. To solve those difficult problems, Lagrangian relaxation and Branch-and-Bound methods are … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

On Minimizing the Energy Consumption of an Electrical Vehicle

The electrical vehicle energy management can be expressed as a Bang-Bang optimal control problem. In this work, we discuss on a new formulation and about the way to approximate this optimal control problem of Bang-Bang type via a discretization technique associated with a Branch-and-Bound algorithm. The problem that we focus on, is the minimization of … Read more

Globally Solving Nonconvex Quadratic Programming Problems via Completely Positive Programming

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of … Read more

Locating a competitive facility in the plane with a robustness criterion

A new continuous location model is presented and embedded in the literature on robustness in facility location. The multimodality of the model is investigated, and a branch and bound method based on dc optimization is described. Numerical experience is reported, showing that the developed method allows one to solve in a few seconds problems with … Read more

An Improved Branch-and-Bound Method for Maximum Monomial Agreement

The NP-hard Maximum Monomial Agreement (MMA) problem consists of finding a single logical conjunction that best fits a weighted dataset of “positive” and “negative” binary vectors. Computing classifiers using boosting methods involves a maximum agreement subproblem at each iteration, although such subproblems are typically solved by heuristic methods. Here, we describe an exact branch and … Read more

Improved semidefinite programming bounds for quadratic assignment problems with suitable symmetry

Semidefinite programming (SDP) bounds for the quadratic assignment problem (QAP) were introduced in: [Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite Programming Relaxations for the Quadratic Assignment Problem. Journal of Combinatorial Optimization, 2,71–109, 1998.] Empirically, these bounds are often quite good in practice, but computationally demanding, even for relatively small instances. For QAP … Read more

Basis Reduction, and the Complexity of Branch-and-Bound

The classical branch-and-bound algorithm for the integer feasibility problem has exponential worst case complexity. We prove that it is surprisingly efficient on reformulations, in which the columns of the constraint matrix are short, and near orthogonal, i.e. a reduced basis of the generated lattice; when the entries of A (i.e. the dense part of the … Read more

Reformulations in Mathematical Programming: Symmetry

If a mathematical program (be it linear or nonlinear) has many symmetric optima, solving it via Branch-and-Bound techniques often yields search trees of disproportionate sizes; thus, finding and exploiting symmetries is an important task. We propose a method for automatically finding the formulation group of any given Mixed-Integer Nonlinear Program, and reformulating the problem so … Read more