A new and improved quantitative recovery analysis for iterative hard thresholding algorithms in compressed sensing

We present a new recovery analysis for a standard compressed sensing algorithm, Iterative Hard Thresholding (IHT) (Blumensath and Davies, 2008), which considers the fixed points of the algorithm. In the context of arbitrary measurement matrices, we derive a sufficient condition for convergence of IHT to a fixed point and a necessary condition for the existence … Read more

RSP-Based Analysis for Sparsest and Least $\ell_1hBcNorm Solutions to Underdetermined Linear Systems

Recently, the worse-case analysis, probabilistic analysis and empirical justification have been employed to address the fundamental question: When does $\ell_1$-minimization find the sparsest solution to an underdetermined linear system? In this paper, a deterministic analysis, rooted in the classic linear programming theory, is carried out to further address this question. We first identify a necessary … Read more

One condition for all: solution uniqueness and robustness of l1-synthesis and l1-analysis minimizations

The l1-synthesis and l1-analysis models recover structured signals from their undersampled measurements. The solution of the former model is often a sparse sum of dictionary atoms, and that of the latter model often makes sparse correlations with dictionary atoms. This paper addresses the question: when can we trust these models to recover specific signals? We … Read more

An exact tree projection algorithm for wavelets

We propose a dynamic programming algorithm for projection onto wavelet tree structures. In contrast to other recently proposed algorithms which only give approximate tree projections for a given sparsity, our algorithm is guaranteed to calculate the projection exactly. We also prove that our algorithm has O(Nk) complexity, where N is the signal dimension and k … Read more

On RIC bounds of Compressed Sensing Matrices for Approximating Sparse Solutions Using Lq Quasi Norms

This paper follows the recent discussion on the sparse solution recovery with quasi-norms Lq; q\in(0,1) when the sensing matrix possesses a Restricted Isometry Constant \delta_{2k} (RIC). Our key tool is an improvement on a version of “the converse of a generalized Cauchy-Schwarz inequality” extended to the setting of quasi-norm. We show that, if \delta_{2k}\le 1/2, … Read more

Compressed Sensing Off the Grid

We consider the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0, 1]. We propose … Read more

Matrix-free Interior Point Method for Compressed Sensing Problems

We consider a class of optimization problems for sparse signal reconstruction which arise in the field of Compressed Sensing (CS). A plethora of approaches and solvers exist for such problems, for example GPSR, FPC AS, SPGL1, NestA, l1 ls, PDCO to mention a few. CS applications lead to very well conditioned optimization problems and therefore … Read more

Learning Circulant Sensing Kernels

In signal acquisition, Toeplitz and circulant matrices are widely used as sensing operators. They correspond to discrete convolutions and are easily or even naturally realized in various applications. For compressive sensing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory, by computer simulations, as well as through physical … Read more