Dual approach for two-stage robust nonlinear optimization

Adjustable robust minimization problems in which the adjustable variables appear in a convex way are difficult to solve. For example, if we substitute linear decision rules for the adjustable variables, then the model becomes convex in the uncertain parameters, whereas for computational tractability we need concavity in the uncertain parameters. In this paper we reformulate … Read more

On Quasi-Newton Forward–Backward Splitting: Proximal Calculus and Convergence

We introduce a framework for quasi-Newton forward–backward splitting algorithms (proximal quasi-Newton methods) with a metric induced by diagonal +/- rank-r symmetric positive definite matrices. This special type of metric allows for a highly efficient evaluation of the proximal mapping. The key to this efficiency is a general proximal calculus in the new metric. By using … Read more

A simplex method for uncapacitated pure-supply infinite network flow problems

We provide a simplex algorithm for a structured class of uncapacitated countably-infinite network flow problems. Previous efforts required explicit capacities on arcs with uniformity properties that facilitate duality arguments. By contrast, this paper takes a “primal” approach by devising a simplex method that provably converges to optimal value using arguments based on convergence of spanning … Read more

Facially dual complete (nice) cones and lexicographic tangents

We study the boundary structure of closed convex cones, with a focus on facially dual complete (nice) cones. These cones form a proper subset of facially exposed convex cones, and they behave well in the context of duality theory for convex optimization. Using the well-known and very commonly used concept of tangent cones in nonlinear … Read more

Randomized Linear Programming Solves the Discounted Markov Decision Problem In Nearly-Linear (Sometimes Sublinear) Running Time

We propose a randomized linear programming algorithm for approximating the optimal policy of the discounted Markov decision problem. By leveraging the value-policy duality, the algorithm adaptively samples state transitions and makes exponentiated primal-dual updates. We show that it finds an ε-optimal policy using nearly-linear running time in the worst case. For Markov decision processes that … Read more

Foundations of gauge and perspective duality

Common numerical methods for constrained convex optimization are predicated on efficiently computing nearest points to the feasible region. The presence of a design matrix in the constraints yields feasible regions with more complex geometries. When the functional components are gauges, there is an equivalent optimization problem—the gauge dual– where the matrix appears only in the … Read more

A universal and structured way to derive dual optimization problem formulations

The dual problem of a convex optimization problem can be obtained in a relatively simple and structural way by using a well-known result in convex analysis, namely Fenchel’s duality theorem. This alternative way of forming a strong dual problem is the subject in this paper. We recall some standard results from convex analysis and then … Read more

A generalized simplex method for integer problems given by verification oracles

We consider a linear problem over a finite set of integer vectors and assume that there is a verification oracle, which is an algorithm being able to verify whether a given vector optimizes a given linear function over the feasible set. Given an initial solution, the algorithm proposed in this paper finds an optimal solution … Read more

Constructing New Weighted l1-Algorithms for the Sparsest Points of Polyhedral Sets

The l0-minimization problem that seeks the sparsest point of a polyhedral set is a longstanding challenging problem in the fields of signal and image processing, numerical linear algebra and mathematical optimization. The weighted l1-method is one of the most plausible methods for solving this problem. In this paper, we develop a new weighted l1-method through … Read more

A Subgradient Method for Free Material Design

A small improvement in the structure of the material could save the manufactory a lot of money. The free material design can be formulated as an optimization problem. However, due to its large scale, second-order methods cannot solve the free material design problem in reasonable size. We formulate the free material optimization (FMO) problem into … Read more