Closing the gap in pivot methods for linear programming

We propose pivot methods that solve linear programs by trying to close the duality gap from both ends. The first method maintains a set \$\B\$ of at most three bases, each of a different type, in each iteration: a primal feasible basis \$B^p\$, a dual feasible basis \$B^d\$ and a primal-and-dual infeasible basis \$B^i\$. From … Read more

Vanishing Price of Anarchy in Large Coordinative Nonconvex Optimization

We focus on a class of nonconvex cooperative optimization problems that involve multiple participants. We study the duality framework and provide geometric and analytic character- izations of the duality gap. The dual problem is related to a market setting in which each participant pursuits self interests at a given price of common goods. The duality … Read more

Asynchronous Block-Iterative Primal-Dual Decomposition Methods for Monotone Inclusions

We propose new primal-dual decomposition algorithms for solving systems of inclusions involving sums of linearly composed maximally monotone operators. The principal innovation in these algorithms is that they are block-iterative in the sense that, at each iteration, only a subset of the monotone operators needs to be processed, as opposed to all operators as in … Read more

Decomposition algorithm for large-scale two-stage unit-commitment

Everyday, electricity generation companies submit a generation schedule to the grid operator for the coming day; computing an optimal schedule is called the unit-commitment problem. Generation companies can also occasionally submit changes to the schedule, that can be seen as intra-daily incomplete recourse actions. In this paper, we propose a two-stage formulation of unit-commitment, wherein … Read more

Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however … Read more

The Slater Conundrum: Duality and Pricing in Infinite Dimensional Optimization

Duality theory is pervasive in finite dimensional optimization. There is growing interest in solving infinite-dimensional optimization problems and hence a corresponding interest in duality theory in infinite dimensions. Unfortunately, many of the intuitions and interpretations common to finite dimensions do not extend to infinite dimensions. In finite dimensions, a dual solution is represented by a … Read more

Gauge optimization, duality, and applications

Gauge functions significantly generalize the notion of a norm, and gauge optimization, as defined by Freund (1987), seeks the element of a convex set that is minimal with respect to a gauge function. This conceptually simple problem can be used to model a remarkable array of useful problems, including a special case of conic optimization, … Read more

The Euclidean distance degree of an algebraic variety

The nearest point map of a real algebraic variety with respect to Euclidean distance is an algebraic function. For instance, for varieties of low rank matrices, the Eckart-Young Theorem states that this map is given by the singular value decomposition. This article develops a theory of such nearest point maps from the perspective of computational … Read more

Nonlinear Equilibrium for optimal resource allocation

We consider Nonlinear Equilibrium (NE) for optimal allocation of limited resources. The NE is a generalization of the Walras-Wald equilibrium, which is equivalent to J. Nash equilibrium in an n-person concave game. Finding NE is equivalent to solving a variational inequality (VI) with a monotone and smooth operator on \$\Omega = \Re_+^n\cross\Re_+^m\$. The projection on … Read more

Orthogonal invariance and identifiability

Orthogonally invariant functions of symmetric matrices often inherit properties from their diagonal restrictions: von Neumann’s theorem on matrix norms is an early example. We discuss the example of “identifiability”, a common property of nonsmooth functions associated with the existence of a smooth manifold of approximate critical points. Identifiability (or its synonym, “partial smoothness”) is the … Read more