Global optimization of pipe networks by the interval analysis approach: the Belgium network case

We show that global optimization techniques, based on interval analysis and constraint propagation, succeed in solving the classical problem of optimization of the Belgium gas network. Citation Published as Inria Research report RR-7796, November 2011. Article Download View Global optimization of pipe networks by the interval analysis approach: the Belgium network case

Optimization over the Efficient Set of a Bicriteria Convex Programming Problem

The problem of optimizing a real function over the efficient set of a multiple objective programming problem arises in a variety of applications. In this article, we propose an outer approximation algorithm for maximizing a function $h(x) = \varphi(f(x))$ over the efficient set $X_E$ of the bi-criteria convex programming problem $ {\rm Vmin} \{f(x)=(f_1(x), f_2(x))^T … Read more

A Python/C library for bound-constrained global optimization with continuous GRASP

This paper describes libcgrpp, a GNU-style dynamic shared Python/C library of the continuous greedy randomized adaptive search procedure (C-GRASP) for bound constrained global optimization. C-GRASP is an extension of the GRASP metaheuristic (Feo and Resende, 1989). After a brief introduction to C-GRASP, we show how to download, install, configure, and use the library through an … Read more

Global optimization of expensive black box problems with a known lower bound

In this paper we propose an algorithm for the global optimization of computationally expensive black–box functions. For this class of problems, no information, like e.g. the gradient, can be obtained and function evaluation is highly expensive. In many applications, however, a lower bound on the objective function is known; in this situation we derive a … Read more

Finding largest small polygons with GloptiPoly

A small polygon is a convex polygon of unit diameter. We are interested in small polygons which have the largest area for a given number of vertices $n$. Many instances are already solved in the literature, namely for all odd $n$, and for $n=4, 6$ and $8$. Thus, for even $n\geq 10$, instances of this … Read more

Globally Solving Nonconvex Quadratic Programming Problems via Completely Positive Programming

Nonconvex quadratic programming (QP) is an NP-hard problem that optimizes a general quadratic function over linear constraints. This paper introduces a new global optimization algorithm for this problem, which combines two ideas from the literature—finite branching based on the first-order KKT conditions and polyhedral-semidefinite relaxations of completely positive (or copositive) programs. Through a series of … Read more

An Exact Penalty Global Optimization Approach for Mixed-Integer Programming Problems

In this work, we propose a global optimization approach for mixed-integer programming problems. To this aim, we preliminarily de ne an exact penalty algorithm model for globally solving general problems and we show its convergence properties. Then, we describe a particular version of the algorithm that solves mixed integer problems. Citation DIS Technical Report n. 17, … Read more

Reduced RLT Representations for Nonconvex Polynomial Programming Problems

This paper explores equivalent, reduced size Reformulation-Linearization Technique (RLT)-based formulations for polynomial programming problems. Utilizing a basis partitioning scheme for an embedded linear equality subsystem, we show that a strict subset of RLT defining equalities imply the remaining ones. Applying this result, we derive significantly reduced RLT representations and develop certain coherent associated branching rules … Read more

A modified DIRECT algorithm for a problem in astrophysics

We present a modification of the DIRECT algorithm, called DIRECT-G, to solve a box-constrained global optimization problem arising in the detection of gravitational waves emitted by coalescing binary systems of compact objects. This is a hard problem since the objective function is highly nonlinear and expensive to evaluate, has a huge number of local extrema … Read more

Exploiting Second-Order Cone Structure for Global Optimization

Identifying and exploiting classes of nonconvex constraints whose feasible region is convex after branching can reduce the time to compute global solutions for nonlinear optimization problems. We develop techniques for identifying quadratic and nonlinear constraints whose feasible region can be represented as the union of a finite number of second-order cones, and we provide necessary … Read more