An L1 Elastic Interior-Point Method for Mathematical Programs with Complementarity Constraints

We propose an interior-point algorithm based on an elastic formulation of the L1-penalty merit function for mathematical programs with complementarity constraints. The method generalizes that of Gould, Orban and Toint (2003) and naturally converges to a strongly stationary point or delivers a certificate of degeneracy without recourse to second-order intermediate solutions. Remarkably, the method allows … Read more

A multi-step interior point warm-start approach for large-scale stochastic linear programming

Interior point methods (IPM) have been recognised as an efficient approach for the solution of large scale stochastic programming problems due to their ability of exploiting the block-angular structure of the augmented system particular to this problem class. Stochastic programming problems, however, have exploitable structure beyond the simple matrix shape: namely the scenarios are typically … Read more

Matrix-Free Interior Point Method

In this paper we present a redesign of a linear algebra kernel of an interior point method to avoid the explicit use of problem matrices. The only access to the original problem data needed are the matrix-vector multiplications with the Hessian and Jacobian matrices. Such a redesign requires the use of suitably preconditioned iterative methods … Read more

An Interior Proximal Method in Vector Optimization

This paper studies the vector optimization problem of finding weakly ef- ficient points for maps from Rn to Rm, with respect to the partial order induced by a closed, convex, and pointed cone C ⊂ Rm, with nonempty inte- rior. We develop for this problem an extension of the proximal point method for scalar-valued convex … Read more

Covariance regularization in inverse space

This paper proposes to apply Gaussian graphical models to estimate the large-scale normal distribution in the context of data assimilation from a relatively small number of data from the satellite. Data assimilation is a field which fits simulation models to observation data developed mainly in meteorology and oceanography. The optimization problem tends to be huge … Read more

Numerical block diagonalization of matrix hBcalgebras with application to semidefinite programming

Semidefinite programming (SDP) is one of the most active areas in mathematical programming, due to varied applications and the availability of interior point algorithms. In this paper we propose a new pre-processing technique for SDP instances that exhibit algebraic symmetry. We present computational results to show that the solution times of certain SDP instances may … Read more

Interior-point method for nonlinear programming with complementarity constraints

In this report, we propose an algorithm for solving nonlinear programming problems with com-plementarity constraints, which is based on the interior-point approach. Main theoretical results concern direction determination and step-length selection. We use an exact penalty function to remove complementarity constraints. Thus a new indefinite linear system is defined with a tridiagonal low-right submatrix. Inexact … Read more

An Interior-Point Algorithm for Large-Scale Nonlinear Optimization with Inexact Step Computations

We present a line-search algorithm for large-scale continuous optimization. The algorithm is matrix-free in that it does not require the factorization of derivative matrices. Instead, it uses iterative linear system solvers. Inexact step computations are supported in order to save computational expense during each iteration. The algorithm is an interior-point approach derived from an inexact … Read more

An interior-point Lagrangian decomposition method for separable convex optimization

In this paper we propose a distributed algorithm for solving large-scale separable convex problems using Lagrangian dual decomposition and the interior-point framework. By adding self-concordant barrier terms to the ordinary Lagrangian we prove under mild assumptions that the corresponding family of augmented dual functions is self-concordant. This makes it possible to efficiently use the Newton … Read more

Hybrid MPI/OpenMP parallel support vector machine training

Support Vector Machines are a powerful machine learning technology, but the training process involves a dense quadratic optimization problem and is computationally challenging. A parallel implementation of Support Vector Machine training has been developed, using a combination of MPI and OpenMP. Using an interior point method for the optimization and a reformulation that avoids the … Read more