A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem

The plain Newton-min algorithm for solving the linear complementarity problem (LCP) 0 ≤ x ⊥ (Mx+q) ≥ 0 can be viewed as an instance of the plain semismooth Newton method on the equational version min(x,Mx+q) = 0 of the problem. This algorithm converges for any q when M is an M-matrix, but not when it … Read more

An ADMM-Based Interior-Point Method for Large-Scale Linear Programming

In this paper, we propose a new framework to implement interior point method (IPM) in order to solve some very large scale linear programs (LP). Traditional IPMs typically use Newton’s method to approximately solve a subproblem that aims to minimize a log-barrier penalty function at each iteration. Due its connection to Newton’s method, IPM is … Read more

Complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs

This paper analyzes the iteration-complexity of a quadratic penalty accelerated inexact proximal point method for solving linearly constrained nonconvex composite programs. More specifically, the objective function is of the form f + h where f is a differentiable function whose gradient is Lipschitz continuous and h is a closed convex function with a bounded domain. … Read more

Primal-Dual Optimization Algorithms over Riemannian Manifolds: an Iteration Complexity Analysis

In this paper we study nonconvex and nonsmooth multi-block optimization over Riemannian manifolds with coupled linear constraints. Such optimization problems naturally arise from machine learning, statistical learning, compressive sensing, image processing, and tensor PCA, among others. We develop an ADMM-like primal-dual approach based on decoupled solvable subroutines such as linearized proximal mappings. First, we introduce … Read more

Complexity analysis of second-order line-search algorithms for smooth nonconvex optimization

There has been much recent interest in finding unconstrained local minima of smooth functions, due in part of the prevalence of such problems in machine learning and robust statistics. A particular focus is algorithms with good complexity guarantees. Second-order Newton-type methods that make use of regularization and trust regions have been analyzed from such a … Read more

Iteration-complexity of a Jacobi-type non-Euclidean ADMM for multi-block linearly constrained nonconvex programs

This paper establishes the iteration-complexity of a Jacobi-type non-Euclidean proximal alternating direction method of multipliers (ADMM) for solving multi-block linearly constrained nonconvex programs. The subproblems of this ADMM variant can be solved in parallel and hence the method has great potential to solve large scale multi-block linearly constrained nonconvex programs. Moreover, our analysis allows the … Read more

Symmetric ADMM with Positive-Indefinite Proximal Regularization for Linearly Constrained Convex Optimization

The proximal ADMM which adds proximal regularizations to ADMM’s subproblems is a popular and useful method for linearly constrained separable convex problems, especially its linearized case. A well-known requirement on guaranteeing the convergence of the method in the literature is that the proximal regularization must be positive semidefinite. Recently it was shown by He et … Read more

An Inexact Spingarn’s Partial Inverse Method with Applications to Operator Splitting and Composite Optimization

We propose and study the iteration-complexity of an inexact version of the Spingarn’s partial inverse method. Its complexity analysis is performed by viewing it in the framework of the hybrid proximal extragradient (HPE) method, for which pointwise and ergodic iteration-complexity has been established recently by Monteiro and Svaiter. As applications, we propose and analyze the … Read more

Randomized Primal-Dual Proximal Block Coordinate Updates

In this paper we propose a randomized primal-dual proximal block coordinate updating framework for a general multi-block convex optimization model with coupled objective function and linear constraints. Assuming mere convexity, we establish its $O(1/t)$ convergence rate in terms of the objective value and feasibility measure. The framework includes several existing algorithms as special cases such … Read more

Structured Nonconvex and Nonsmooth Optimization: Algorithms and Iteration Complexity Analysis

Nonconvex optimization problems are frequently encountered in much of statistics, business, science and engineering, but they are not yet widely recognized as a technology. A reason for this relatively low degree of popularity is the lack of a well developed system of theory and algorithms to support the applications, as is the case for its … Read more