An augmented Lagrangian method exploiting an active-set strategy and second-order information

In this paper, we consider nonlinear optimization problems with nonlinear equality constraints and bound constraints on the variables. For the solution of such problems, many augmented Lagrangian methods have been defined in the literature. Here, we propose to modify one of these algorithms, namely ALGENCAN by Andreani et al., in such a way to incorporate … Read more

Infeasibility detection with primal-dual hybrid gradient for large-scale linear programming

We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at hand is assumed to be feasible. When the problem is not feasible, the iterates of the algorithm do … Read more

Scalable Subspace Methods for Derivative-Free Nonlinear Least-Squares Optimization

We introduce a general framework for large-scale model-based derivative-free optimization based on iterative minimization within random subspaces. We present a probabilistic worst-case complexity analysis for our method, where in particular we prove high-probability bounds on the number of iterations before a given optimality is achieved. This framework is specialized to nonlinear least-squares problems, with a … Read more

A Matrix-Free Trust-Region Newton Algorithm for Convex-Constrained Optimization

We describe a matrix-free trust-region algorithm for solving convex-constrained optimization problems that uses the spectral projected gradient method to compute trial steps. To project onto the intersection of the feasible set and the trust region, we reformulate and solve the dual projection problem as a one-dimensional root finding problem. We demonstrate our algorithm’s performance on … Read more

Stochastic dual dynamic programming and its variants – a review

We provide a tutorial-type review on stochastic dual dynamic programming (SDDP), as one of the state-of-the-art solution methods for large-scale multistage stochastic programs. Since introduced about 30 years ago for solving large-scale multistage stochastic linear programming problems in energy planning, SDDP has been applied to practical problems from several fields and is enriched by various … Read more

Secant acceleration of sequential residual methods for solving large-scale nonlinear systems of equations

Sequential Residual Methods try to solve nonlinear systems of equations $F(x)=0$ by iteratively updating the current approximate solution along a residual-related direction. Therefore, memory requirements are minimal and, consequently, these methods are attractive for solving large-scale nonlinear systems. However, the convergence of these algorithms may be slow in critical cases; therefore, acceleration procedures are welcome. … Read more

A rolling-horizon approach for multi-period optimization

Mathematical optimization problems including a time dimension abound. For example, logistics, process optimization and production planning tasks must often be optimized for a range of time periods. Usually, these problems incorporating time structure are very large and cannot be solved to global optimality by modern solvers within a reasonable period of time. Therefore, the so-called … Read more

Compact Representations of Structured BFGS Matrices

For general large-scale optimization problems compact representations exist in which recursive quasi-Newton update formulas are represented as compact matrix factorizations. For problems in which the objective function contains additional structure, so-called structured quasi-Newton methods exploit available second-derivative information and approximate unavailable second derivatives. This article develops the compact representations of two structured Broyden-Fletcher-Goldfarb-Shanno update formulas. … Read more

Solving Large Scale Cubic Regularization by a Generalized Eigenvalue Problem

Cubic Regularization methods have several favorable properties. In particular under mild assumptions, they are globally convergent towards critical points with second order necessary conditions satisfied. Their adoption among practitioners, however, does not yet match the strong theoretical results. One of the reasons for this discrepancy may be additional implementation complexity needed to solve the occurring … Read more

Random projections for quadratic programs

Random projections map a set of points in a high dimensional space to a lower dimen- sional one while approximately preserving all pairwise Euclidean distances. While random projections are usually applied to numerical data, we show they can be successfully applied to quadratic programming formulations over a set of linear inequality constraints. Instead of solving … Read more