Finding a point in the relative interior of a polyhedron

A new initialization or `Phase I’ strategy for feasible interior point methods for linear programming is proposed that computes a point on the primal-dual central path associated with the linear program. Provided there exist primal-dual strictly feasible points — an all-pervasive assumption in interior point method theory that implies the existence of the central path … Read more

Primal-dual first-order methods with ${\cal O}(1/\epsilon)$ iteration-complexity for cone programming

In this paper we consider the general cone programming problem, and propose primal-dual convex (smooth and/or nonsmooth) minimization reformulations for it. We then discuss first-order methods suitable for solving these reformulations, namely, Nesterov’s optimal method \cite{Nest83-1,Nest05-1}, Nesterov’s smooth approximation scheme \cite{Nest05-1}, and Nemirovski’s prox-method \cite{Nem05-1}, and propose a variant of Nesterov’s optimal method which has … Read more

Exact regularization of convex programs

The regularization of a convex program is exact if all solutions of the regularized problem are also solutions of the original problem for all values of the regularization parameter below some positive threshold. For a general convex program, we show that the regularization is exact if and only if a certain selection problem has a … Read more

A Simpler and Tighter Redundant Klee-Minty Construction

By introducing redundant Klee-Minty examples, we have previously shown that the central path can be bent along the edges of the Klee-Minty cubes, thus having $2^n-2$ sharp turns in dimension $n$. In those constructions the redundant hyperplanes were placed parallel with the facets active at the optimal solution. In this paper we present a simpler … Read more

Correlative sparsity in primal-dual interior-point methods for LP, SDP and SOCP

Exploiting sparsity has been a key issue in solving large-scale optimization problems. The most time-consuming part of primal-dual interior-point methods for linear programs, second-order cone programs, and semidefinite programs is solving the Schur complement equation at each iteration, usually by the Cholesky factorization. The computational efficiency is greatly affected by the sparsity of the coefficient … Read more

Central path curvature and iteration-complexity for redundant Klee-Minty cubes

We consider a family of linear optimization problems over the n-dimensional Klee-Minty cube and show that the central path may visit all of its vertices in the same order as simplex methods do. This is achieved by carefully adding an exponential number of redundant constraints that forces the central path to take at least 2^n-2 … Read more

Implementation of Warm-Start Strategies in Interior-Point Methods for Linear Programming in Fixed Dimension

We implement several warm-start strategies in interior-point methods for linear programming (LP). We study the situation in which both the original LP instance and the perturbed one have exactly the same dimensions. We consider different types of perturbations of data components of the original instance and different sizes of each type of perturbation. We modify … Read more

Representing the space of linear programs as a Grassmannian

We represent the space of linear programs as the space of projection matrices. Projection matrices of the same dimension and rank comprise a Grassmannian, which has rich geometric and algebraic structures. An ordinary differential equation on the space of projection matrices defines a path for each projection matrix associated with a linear programming instance and … Read more

Algebraic Tail Decay of Condition Numbers for Random Conic Systems under a General Family of Input Distributions

We consider the conic feasibility problem associated with linear homogeneous systems of inequalities. The complexity of iterative algorithms for solving this problem depends on a condition number. When studying the typical behaviour of algorithms under stochastic input one is therefore naturally led to investigate the fatness of the distribution tails of the random condition number … Read more

Dynamic Enumeration of All Mixed Cells

The polyhedral homotopy method, which has been known as a powerful numerical method for computing all isolated zeros of a polynomial system, requires all mixed cells of the support of the system to construct a family of homotopy functions. Finding the mixed cells is formulated in terms of a linear inequality system with an additional … Read more