A predictor-corrector algorithm for linear optimization based on a specific self-regular proximity function
It is well known that the so-called first-order predictor-corrector methods working in a large neighborhood of the central path are among the most efficient interior-point methods (IPMs) for linear optimization (LO) problems. However, the best known iteration complexity of this type of methods is $O\br{n \log\frac{(x^0)^Ts^0}{\varepsilon}}$. It is of interests to investigate whether the complexity … Read more