Infeasibility detection with primal-dual hybrid gradient for large-scale linear programming
We study the problem of detecting infeasibility of large-scale linear programming problems using the primal-dual hybrid gradient method (PDHG) of Chambolle and Pock (2011). The literature on PDHG has mostly focused on settings where the problem at hand is assumed to be feasible. When the problem is not feasible, the iterates of the algorithm do … Read more