Optimal Design of Retailer-Prosumer Electricity Tariffs Using Bilevel Optimization

We compare various flexible tariffs that have been proposed to cost-effectively govern a prosumer’s electricity management – in particular time-of-use (TOU), critical-peak-pricing (CPP), and a real-time-pricing tariff (RTP). As the outside option, we consider a fixed-price tariff (FP) that restricts the specific characteristics of TOU, CPP, and RTP, so that the flexible tariffs are at … Read more

Mixed Integer Programming models for planning maintenance at offshore wind farms under uncertainty

We introduce the Stochastic Maintenance Fleet Transportation Problem for Offshore wind farms (SMFTPO), in which a maintenance provider determines an optimal, medium-term planning for maintaining multiple wind farms while controlling for uncertainty in the maintenance tasks and weather conditions. Since the maintenance provider is typically not the owner of a wind farm, it needs to … Read more

Improved Penalty Algorithm for Mixed Integer PDE Constrained Optimization (MIPDECO) Problems

Optimal control problems including partial differential equation (PDE) as well as integer constraints merge the combinatorial difficulties of integer programming and the challenges related to large-scale systems resulting from discretized PDEs. So far, the Branch-and-Bound framework has been the most common solution strategy for such problems. In order to provide an alternative solution approach, especially … Read more

A Unified Approach to Mixed-Integer Optimization Problems With Logical Constraints

We propose a unified framework to address a family of classical mixed-integer optimization problems with logically constrained decision variables, including network design, facility location, unit commitment, sparse portfolio selection, binary quadratic optimization, sparse principal component analysis and sparse learning problems. These problems exhibit logical relationships between continuous and discrete variables, which are usually reformulated linearly … Read more

Globalized Robust Optimization with Gamma-Uncertainties

Globalized robust optimization has been proposed as a generalization of the standard robust optimization framework in order to allow for a controlled decrease in protection depending on the distance of the realized scenario from the predefined uncertainty set. In this work, we specialize the notion of globalized robustness to Gamma-uncertainty in order to extend its … Read more

Portfolio Optimization with Irreversible Long-Term Investments in Renewable Energy under Policy Risk: A Mixed-Integer Multistage Stochastic Model and a Moving-Horizon Approach

Portfolio optimization is an ongoing hot topic of mathematical optimization and management science. Due to the current financial market environment with low interest rates and volatile stock markets, it is getting more and more important to extend portfolio optimization models by other types of investments than classical assets. In this paper, we present a mixed-integer … Read more

Adaptive Two-stage Stochastic Programming with an Application to Capacity Expansion Planning

Multi-stage stochastic programming is a well-established framework for sequential decision making under uncertainty by seeking policies that are fully adapted to the uncertainty. Often, e.g. due to contractual constraints, such flexible and adaptive policies are not desirable, and the decision maker may need to commit to a set of actions for a certain number of … Read more

Risk-Averse Bi-Level Stochastic Network Interdiction Model for Cyber-Security Risk Management

Security of cyber networks is crucial; recent severe cyber-attacks have had a devastating effect on many large organizations. The attack graph, which maps the potential attack paths of a cyber network, is a popular tool for analyzing cyber system vulnerability. In this study, we propose a bi-level stochastic network interdiction model on an attack graph … Read more

Radius of Robust Feasibility for Mixed-Integer Problems

For a mixed-integer linear problem (MIP) with uncertain constraints, the radius of robust feasibility (RRF) determines a value for the maximal “size” of the uncertainty set such that robust feasibility of the MIP can be guaranteed. To the best of our knowledge, the approaches for the RRF presented in the literature are restricted to continuous … Read more

Stochastic Lipschitz Dynamic Programming

We propose a new algorithm for solving multistage stochastic mixed integer linear programming (MILP) problems with complete continuous recourse. In a similar way to cutting plane methods, we construct nonlinear Lipschitz cuts to build lower approximations for the non-convex cost to go functions. An example of such a class of cuts are those derived using … Read more