A recursive trust-region method in infinity norm for bound-constrained nonlinear optimization

A recursive trust-region method is introduced for the solution of bound-constrained nonlinear nonconvex optimization problems for which a hierarchy of descriptions exists. Typical cases are infinite-dimensional problems for which the levels of the hierarchy correspond to discretization levels, from coarse to fine. The new method uses the infinity norm to define the shape of the … Read more

An Adaptive Primal-Dual Warm-Start Technique for Quadratic Multiobjective Optimization

We present a new primal-dual algorithm for convex quadratic multicriteria optimization. The algorithm is able to adaptively refine the approximation to the set of efficient points by way of a warm-start interior-point scalarization approach. Results of this algorithm when applied on a three-criteria real-world power plant optimization problem are reported, thereby illustrating the feasibility of … Read more

Numerical Experience with a Recursive Trust-Region Method for Multilevel Nonlinear Optimization

We consider an implementation of the recursive multilevel trust-region algorithm proposed by Gratton, Sartenaer, Toint (2004), and provide significant numerical experience on multilevel test problems. A suitable choice of the algorithm’s parameters is identified on these problems, yielding a very satisfactory compromise between reliability and efficiency. The resulting default algorithm is then compared to alternative … Read more

Second-order convergence properties of trust-region methods using incomplete curvature information, with an application to multigrid optimization

Convergence properties of trust-region methods for unconstrained nonconvex optimization is considered in the case where information on the objective function’s local curvature is incomplete, in the sense that it may be restricted to a fixed set of “test directions” and may not be available at every iteration. It is shown that convergence to local “weak” … Read more

A Note on Multiobjective Optimization and Complementarity Constraints

We propose a new approach to convex nonlinear multiobjective optimization that captures the geometry of the Pareto set by generating a discrete set of Pareto points optimally. We show that the problem of finding an optimal representation of the Pareto surface can be formulated as a mathematical program with complementarity constraints. The complementarity constraints arise … Read more

Recursive Trust-Region Methods for Multilevel Nonlinear Optimization (Part I): Global Convergence and Complexity

A class of trust-region methods is presented for solving unconstrained nonlinear and possibly nonconvex discretized optimization problems, like those arising in systems governed by partial differential equations. The algorithms in this class make use of the discretization level as a mean of speeding up the computation of the step. This use is recursive, leading to … Read more

A Local Convergence Theory of a Filter Line Search Method for Nonlinear Programming

In this paper the theory of local convergence for a class of line search filter type methods for nonlinear programming is presented. The algorithm presented here is globally convergent (see Chin [4]) and the rate of convergence is two-step superlinear. The proposed algorithm solves a sequence of quadratic progrmming subproblems to obtain search directions and … Read more

A Global Convergence Theory of a Filter Line Search Method for Nonlinear Programming

A framework for proving global convergence for a class of line search filter type methods for nonlinear programming is presented. The underlying method is based on the dominance concept of multiobjective optimization where trial points are accepted provided there is a sufficient decrease in the objective function or constraints violation function. The proposed methods solve … Read more

Dynamic Weighted Aggregation for Evolutionary Multiobjective Optimization

Weighted sum based approaches to multiobjective optimization is computationally very efficient. However,they have two main weakness: 1) Only one Pareto solution can be obtained in one run 2) The solutions in the concave part of the Pareto front cannot be obtained. This paper proposes a new theory on multiobjective optimization using weighted aggregation approach. Based … Read more

On the global convergence of an SLP-filter algorithm

A mechanism for proving global convergence infilter-type methods for nonlinear programming is described. Such methods are characterized by their use of the dominance concept of multi objective optimization, instead of a penalty parameter whose adjustment can be problematic. The main point of interest is to demonstrate how convergence for NLP can be induced without forcing … Read more