Worst-Case Complexity of TRACE with Inexact Subproblem Solutions for Nonconvex Smooth Optimization

An algorithm for solving nonconvex smooth optimization problems is proposed, analyzed, and tested. The algorithm is an extension of the Trust Region Algorithm with Contractions and Expansions (TRACE) [Math. Prog. 162(1):132, 2017]. In particular, the extension allows the algorithm to use inexact solutions of the arising subproblems, which is an important feature for solving large-scale … Read more

Advancements in the computation of enclosures for multi-objective optimization problems

A central goal for multi-objective optimization problems is to compute their nondominated sets. In most cases these sets consist of infinitely many points and it is not a practical approach to compute them exactly. One solution to overcome this problem is to compute an enclosure, a special kind of coverage, of the nondominated set. One … Read more

Improving the global convergence of Inexact Restoration methods for constrained optimization problems

Inexact restoration (IR) methods are an important family of numerical methods for solving constrained optimization problems with applications to electronic structures and bilevel programming among others areas. In these methods, the minimization is divided in two phases: decreasing infeasibility (feasibility phase) and improving optimality (optimality phase). The feasibility phase does not require the generated points … Read more

Non-anticipative risk-averse analysis with effective scenarios applied to long-term hydrothermal scheduling

In this paper, we deal with long-term operation planning problems of hydrothermal power systems by considering scenario analysis and risk aversion. This is a stochastic sequential decision problem whose solution must be non-anticipative, in the sense that a decision at a stage cannot use a perfect knowledge of the future. We propose strategies to reduce … Read more

Convergence properties of an Objective-Function-Free Optimization regularization algorithm, including an $\mathcal{O}(\epsilon^{-3/2})$ complexity bound

An adaptive regularization algorithm for unconstrained nonconvex optimization is presented in which the objective function is never evaluated, but only derivatives are used. This algorithm belongs to the class of adaptive regularization methods, for which optimal worst-case complexity results are known for the standard framework where the objective function is evaluated. It is shown in … Read more

Adaptive Nonlinear Optimization of District Heating Networks Based on Model and Discretization Catalogs

We propose an adaptive optimization algorithm for operating district heating networks in a stationary regime. The behavior of hot water flow in the pipe network is modeled using the incompressible Euler equations and a suitably chosen energy equation. By applying different simplifications to these equations, we derive a catalog of models. Our algorithm is based … Read more

A Trust Region Method for the Optimization of Noisy Functions

Classical trust region methods were designed to solve problems in which function and gradient information are exact. This paper considers the case when there are bounded errors (or noise) in the above computations and proposes a simple modification of the trust region method to cope with these errors. The new algorithm only requires information about … Read more

Worst-Case Complexity of an SQP Method for Nonlinear Equality Constrained Stochastic Optimization

A worst-case complexity bound is proved for a sequential quadratic optimization (commonly known as SQP) algorithm that has been designed for solving optimization problems involving a stochastic objective function and deterministic nonlinear equality constraints. Barring additional terms that arise due to the adaptivity of the monotonically nonincreasing merit parameter sequence, the proved complexity bound is … Read more

Using an Analytical Computational-Geometry Library to Model Nonoverlap and Boundary-Distance Constraints and their Application to Packing Poly-Bézier Shapes

In this paper we will show how to model nonoverlap as well as uniform and nonuniform boundary-distance constraints between poly-Bézier shapes using an analytical computational-geometry library. We then use this capability to develop, implement and analyze analytical-optimization solutions to minimum-area rectangular-boundary packing-problems as well as minimum-area one- and two-dimensional puzzle-piece packing-problems. In the process, we … Read more

A sequential adaptive regularisation using cubics algorithm for solving nonlinear equality constrained optimization

The adaptive regularisation algorithm using cubics (ARC) is initially proposed for unconstrained optimization. ARC has excellent convergence properties and complexity. In this paper, we extend ARC to solve nonlinear equality constrained optimization and propose a sequential adaptive regularisation using cubics algorithm inspired by sequential quadratic programming (SQP) methods. In each iteration of our method, the … Read more