Controlled Markov Chains with AVaR Criteria for Unbounded Costs

In this paper, we consider the control problem with the Average-Value-at-Risk (AVaR) criteria of the possibly unbounded $L^{1}$-costs in infinite horizon on a Markov Decision Process (MDP). With a suitable state aggregation and by choosing a priori a global variable $s$ heuristically, we show that there exist optimal policies for the infinite horizon problem. To … Read more

Error estimates for the Euler discretization of an optimal control problem with first-order state constraints

We study the error introduced in the solution of an optimal control problem with first order state constraints, for which the trajectories are approximated with a classical Euler scheme. We obtain order one approximation results in the $L^\infty$ norm (as opposed to the order 2/3 obtained in the literature). We assume either a strong second … Read more

Discrete Approximations of a Controlled Sweeping Process

The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhedral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of … Read more

Distributed Optimization Methods for Large Scale Optimal Control

This thesis aims to develop and implement both nonlinear and linear distributed optimization methods that are applicable, but not restricted to the optimal control of distributed systems. Such systems are typically large scale, thus the well-established centralized solution strategies may be computationally overly expensive or impossible and the application of alternative control algorithms becomes necessary. … Read more

A Parallel Quadratic Programming Method for Dynamic Optimization Problems

Quadratic programming problems (QPs) that arise from dynamic optimization problems typically exhibit a very particular structure. We address the ubiquitous case where these QPs are strictly convex and propose a dual Newton strategy that exploits the block-bandedness similarly to an interior-point method. Still, the proposed method features warmstarting capabilities of active-set methods. We give details … Read more

Some Remarks for a Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems

In this paper we obtained new approach for the problem, which it is described in reference[1,2]. In the references [1], the authors are studied Decomposition of Linear-Quadratic optimal Control problems for Two-Steps Systems. In [1], the authors assumed the switching point is fixed and it is given algorithm for solving Linear-Quadratic optimal Control problem. But … Read more

Optimization of running strategies based on anaerobic energy and variations of velocity

We present new models, numerical simulations and rigorous analysis for the optimization of the velocity in a race. In a seminal paper, Keller (1973,1974) explained how a runner should determine his speed in order to run a given distance in the shortest time. We extend this analysis, based on the equation of motion and aerobic … Read more

Optimal management and sizing of energy storage under dynamic pricing for the efficient integration of renewable energy

In this paper, we address the optimal energy storage management and sizing problem in the presence of renewable energy and dynamic pricing. We formulate the problem as a stochastic dynamic programming problem that aims to minimize the long-term average cost of conventional generation used as well as investment in storage, if any, while satisfying all … Read more

Sensitivity analysis for relaxed optimal control problems with final-state constraints

In this article, we compute a second-order expansion of the value function of a family of relaxed optimal control problems with final-state constraints, parameterized by a perturbation variable. The sensitivity analysis is performed for controls that we call R-strong solutions. They are optimal solutions with respect to the set of feasible controls with a uniform … Read more

Sensitivity analysis for the outages of nuclear power plants

Nuclear power plants must be regularly shut down in order to perform refueling and maintenance operations. The scheduling of the outages is the first problem to be solved in electricity production management. It is a hard combinatorial problem for which an exact solving is impossible. Our approach consists in modelling the problem by a two-level … Read more