An extended approach for lifting clique tree inequalities

We present a new lifting approach for strengthening arbitrary clique tree inequalities that are known to be facet defining for the symmetric traveling salesman problem in order to get stronger valid inequalities for the symmetric quadratic traveling salesman problem (SQTSP). Applying this new approach to the subtour elimination constraints (SEC) leads to two new classes … Read more

The Asymmetric Quadratic Traveling Salesman Problem

The quadratic traveling salesman problem asks for a tour of minimal costs where the costs are associated with each two arcs that are traversed in succession. This structure arises, e. g., if the succession of two arcs represents the costs of loading processes in transport networks or a switch between different technologies in communication networks. … Read more

Unbounded Convex Sets for Non-Convex Mixed-Integer Quadratic Programming

This paper introduces a fundamental family of unbounded convex sets that arises in the context of non-convex mixed-integer quadratic programming. It is shown that any mixed-integer quadratic program with linear constraints can be reduced to the minimisation of a linear function over a set in the family. Some fundamental properties of the convex sets are … Read more

A Polyhedral Study of the Semi-Continuous Knapsack Problem

We study the convex hull of the feasible set of the semi-continuous knapsack problem, in which the variables belong to the union of two intervals. Besides being important in its own right, the semi-continuous knapsack problem arises in a number of other contexts, e.g. it is a relaxation of general mixed-integer programming. We show how … Read more

LP and SDP Branch-and-Cut Algorithms for the Minimum Graph Bisection Problem: A Computational Comparison

While semidefinite relaxations are known to deliver good approximations for combinatorial optimization problems like graph bisection, their practical scope is mostly associated with small dense instances. For large sparse instances, cutting plane techniques are considered the method of choice. These are also applicable for semidefinite relaxations via the spectral bundle method, which allows to exploit … Read more

The Time Dependent Traveling Salesman Problem: Polyhedra and Algorithm

The Time Dependent Traveling Salesman Problem (TDTSP) is a generalization of the classical Traveling Salesman Problem (TSP), where arc costs depend on their position in the tour with respect to the source node. While TSP instances with thousands of vertices can be solved routinely, there are very challenging TDTSP instances with less than 100 vertices. … Read more

Small bipartite subgraph polytopes

We compute a complete linear description of the bipartite subgraph polytope, for up to seven nodes, and a conjectured complete description for eight nodes. We then show how these descriptions were used to compute the integrality ratio of various relaxations of the max-cut problem, again for up to eight nodes. CitationL. Galli & A.N. Letchford … Read more

On generalized network design polyhedra

In recent years, there has been an increased literature on so-called Generalized Network Design Problems, such as the Generalized Minimum Spanning Tree Problem and the Generalized Traveling Salesman Problem. In such problems, the node set of a graph is partitioned into clusters, and the feasible solutions must contain one node from each cluster. Up to … Read more

Binary positive semidefinite matrices and associated integer polytopes

We consider the positive semidefinite (psd) matrices with binary entries, along with the corresponding integer polytopes. We begin by establishing some basic properties of these matrices and polytopes. Then, we show that several families of integer polytopes in the literature — the cut, boolean quadric, multicut and clique partitioning polytopes — are faces of binary … Read more

On Non-Convex Quadratic Programming with Box Constraints

Non-Convex Quadratic Programming with Box Constraints is a fundamental NP-hard global optimisation problem. Recently, some authors have studied a certain family of convex sets associated with this problem. We prove several fundamental results concerned with these convex sets: we determine their dimension, characterise their extreme points and vertices, show their invariance under certain affine transformations, … Read more