Projection onto hyperbolicity cones and beyond: a dual Frank-Wolfe approach

We discuss the problem of projecting a point onto an arbitrary hyperbolicity cone from both theoretical and numerical perspectives. While hyperbolicity cones are furnished with a generalization of the notion of eigenvalues, obtaining closed form expressions for the projection operator as in the case of semidefinite matrices is an elusive endeavour. To address that we … Read more

Explicit convex hull description of bivariate quadratic sets with indicator variables

We consider the nonconvex set \(S_n = \{(x,X,z): X = x x^T, \; x (1-z) =0,\; x \geq 0,\; z \in \{0,1\}^n\}\), which is closely related to the feasible region of several difficult nonconvex optimization problems such as the best subset selection and constrained portfolio optimization. Utilizing ideas from convex analysis and disjunctive programming, we … Read more

Distributed Projections onto a Simplex

Projecting a vector onto a simplex is a well-studied problem that arises in a wide range of optimization problems. Numerous algorithms have been proposed for determining the projection; however, all but one of these algorithms are serial. We address this gap by developing a method that preprocesses the input vector by decomposing and distributing it … Read more

Projection onto the exponential cone: a univariate root-finding problem

The exponential function and its logarithmic counterpart are essential corner stones of nonlinear mathematical modeling. In this paper we treat their conic extensions, the exponential cone and the relative entropy cone, in primal, dual and polar form, and show that finding the nearest mapping of a point onto these convex sets all reduce to a … Read more

An Exact Projection-Based Algorithm for Bilevel Mixed-Integer Problems with Nonlinearities

We propose an exact global solution method for bilevel mixed-integer optimization problems with lower-level integer variables and including nonlinear terms such as, \eg, products of upper-level and lower-level variables. Problems of this type are extremely challenging as a single-level reformulation suitable for off-the-shelf solvers is not available in general. In order to solve these problems … Read more

Projection and rescaling algorithm for finding most interior solutions to polyhedral conic systems

We propose a simple projection and rescaling algorithm that finds {\em most interior} solutions to the pair of feasibility problems \[ \text{find} x\in L\cap \R^n_{+} \text{ and } \text{find} \; \hat x\in L^\perp\cap\R^n_{+}, \] where $L$ is a linear subspace of $\R^n$ and $L^\perp$ is its orthogonal complement. The algorithm complements a basic procedure that … Read more

Using two-dimensional Projections for Stronger Separation and Propagation of Bilinear Terms

One of the most fundamental ingredients in mixed-integer nonlinear programming solvers is the well- known McCormick relaxation for a product of two variables x and y over a box-constrained domain. The starting point of this paper is the fact that the convex hull of the graph of xy can be much tighter when computed over … Read more

Computational performance of a projection and rescaling algorithm

This paper documents a computational implementation of a {\em projection and rescaling algorithm} for finding most interior solutions to the pair of feasibility problems find $x\in L\cap\mathbb{R}^n_{+} $ and find $x\in L^\perp\cap\mathbb{R}^n_{+},$ where $L$ denotes a linear subspace in $\mathbb{R}^n$ and $L^\perp$ denotes its orthogonal complement. The projection and rescaling algorithm is a recently developed … Read more

A projection algorithm based on KKT conditions for convex quadratic semidefinite programming with nonnegative constraints

The dual form of convex quadratic semidefinite programming (CQSDP) problem, with nonnegative constraints, is a 4-block separable convex optimization problem. It is known that,the directly extended 4-block alternating direction method of multipliers (ADMM4d) is very efficient to solve the dual, but its convergence is not guaranteed. In this paper, we reformulate the dual as a … Read more

Solving Conic Systems via Projection and Rescaling

We propose a simple {\em projection and algorithm} to solve the feasibility problem \[ \text{ find } x \in L \cap \Omega, \] where $L$ and $\Omega$ are respectively a linear subspace and the interior of a symmetric cone in a finite-dimensional vector space $V$. This projection and rescaling algorithm is inspired by previous work … Read more