Deriving robust counterparts of nonlinear uncertain inequalities

In this paper we provide a systematic way to construct the robust counterpart of a nonlinear uncertain inequality that is concave in the uncertain parameters. We use convex analysis (support functions, conjugate functions, Fenchel duality) and conic duality in order to convert the robust counterpart into an explicit and computationally tractable set of constraints. It … Read more

Supermodularity and Affine Policies in Dynamic Robust Optimization

This paper considers robust dynamic optimization problems, where the unknown parameters are modeled as uncertainty sets. We seek to bridge two classical paradigms for solving such problems, namely (1) Dynamic Programming (DP), and (2) policies parameterized in model uncertainties (also known as decision rules), obtained by solving tractable convex optimization problems. We provide a set … Read more

Robust Decision Making using a Risk-Averse Utility Set

Eliciting the utility of a decision maker is difficult. In this paper, we develop a flexible decision making framework, which uses the concept of utility robustness to address the problem of ambiguity and inconsistency in utility assessments. The ideas are developed by giving a probabilistic interpretation to utility and marginal utility functions. Boundary and additional … Read more

How to Solve a Semi-infinite Optimization Problem

After an introduction to main ideas of semi-infinite optimization, this article surveys recent developments in theory and numerical methods for standard and generalized semi-infinite optimization problems. Particular attention is paid to connections with mathematical programs with complementarity constraints, lower level Wolfe duality, semi-smooth approaches, as well as branch and bound techniques in adaptive convexification procedures. … Read more

Economic and Environmental Analysis of Photovoltaic Energy Systems via Robust Optimization

This paper deals with the problem of determining the optimal size of a residential grid-connected photovoltaic system to meet a certain CO2 reduction target at a minimum cost. Ren et al. proposed a novel approach using a simple linear programming that minimizes the total energy costs for residential buildings in Japan. However, their approach is … Read more

The Decision Rule Approach to Optimization under Uncertainty: Methodology and Applications

Dynamic decision-making under uncertainty has a long and distinguished history in operations research. Due to the curse of dimensionality, solution schemes that naively partition or discretize the support of the random problem parameters are limited to small and medium-sized problems, or they require restrictive modeling assumptions (e.g., absence of recourse actions). In the last few … Read more

Models for managing the impact of an epidemic

In this paper we consider robust models of surge capacity plans to be deployed in the event of a flu pandemic. In particular, we focus on managing critical staff levels at organizations that must remain operational during such an event. We develop efficient procedures for managing emergency resources so as to minimize the impact of … Read more

Robust Rankings for College Football

We investigate the sensitivity of the Colley Matrix (CM) rankings—one of six computer rankings used by the Bowl Championship Series—to (hypothetical) changes in the outcomes of (actual) games. Specifically, we measure the shift in the rankings of the top 25 teams when the win-loss outcome of, say, a single game between two teams, each with … Read more

Robust Network Design: Formulations, Valid Inequalities, and Computations

Traffic in communication networks fluctuates heavily over time. Thus, to avoid capacity bottlenecks, operators highly overestimate the traffic volume during network planning. In this paper we consider telecommunication network design under traffic uncertainty, adapting the robust optimization approach of Bertsimas and Sim (2004). We present three different mathematical formulations for this problem, provide valid inequalities, … Read more

Robust solutions of optimization problems affected by uncertain probabilities

In this paper we focus on robust linear optimization problems with uncertainty regions defined by phi-divergences (for example, chi-squared, Hellinger, Kullback-Leibler). We show how uncertainty regions based on phi-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization … Read more