Semidefinite programming and sums of hermitian squares of noncommutative polynomials

An algorithm for finding sums of hermitian squares decompositions for polynomials in noncommuting variables is presented. The algorithm is based on the “Newton chip method”, a noncommutative analog of the classical Newton polytope method, and semide finite programming. CitationI. Klep and J. Povh. Semide nite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. … Read more

Band Gap Optimization of Two-Dimensional Photonic Crystals Using Semidefinite Programming and Subspace Methods

In this paper, we consider the optimal design of photonic crystal band structures for two-dimensional square lattices. The mathematical formulation of the band gap optimization problem leads to an infinite-dimensional Hermitian eigenvalue optimization problem parametrized by the dielectric material and the wave vector. To make the problem tractable, the original eigenvalue problem is discretized using … Read more

Trace Norm Regularization: Reformulations, Algorithms, and Multi-task Learning

We consider a recently proposed optimization formulation of multi-task learning based on trace norm regularized least squares. While this problem may be formulated as a semidefinite program (SDP), its size is beyond general SDP solvers. Previous solution approaches apply proximal gradient methods to solve the primal problem. We derive new primal and dual reformulations of … Read more

A Hierarchy of Near-Optimal Policies for Multi-stage Adaptive Optimization

In this paper, we propose a new tractable framework for dealing with multi-stage decision problems affected by uncertainty, applicable to robust optimization and stochastic programming. We introduce a hierarchy of polynomial disturbance-feedback control policies, and show how these can be computed by solving a single semidefinite programming problem. The approach yields a hierarchy parameterized by … Read more

Approximating semidefinite packing problems

In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding technique for dimension reduction. Our algorithm exploits the structural similarity between semidefinite packing programs … Read more

Rank-Sparsity Incoherence for Matrix Decomposition

Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components. Such a problem arises in a number of applications in model and system identification, and is NP-hard in general. In this … Read more

Graph Realizations Associated with Minimizing the Maximum Eigenvalue of the Laplacian

In analogy to the absolute algebraic connectivity of Fiedler, we study the problem of minimizing the maximum eigenvalue of the Laplacian of a graph by redistributing the edge weights. Via semidefinite duality this leads to a graph realization problem in which nodes should be placed as close as possible to the origin while adjacent nodes … Read more

Explicit Sensor Network Localization using Semidefinite Representations and Facial Reductions

The sensor network localization, SNL, problem in embedding dimension r, consists of locating the positions of wireless sensors, given only the distances between sensors that are within radio range and the positions of a subset of the sensors (called anchors). Current solution techniques relax this problem to a weighted, nearest, (positive) semidefinite programming, SDP, completion … Read more

Cutting Plane Methods and Subgradient Methods

Interior point methods have proven very successful at solving linear programming problems. When an explicit linear programming formulation is either not available or is too large to employ directly, a column generation approach can be used. Examples of column generation approaches include cutting plane methods for integer programming and decomposition methods for many classes of … Read more

Row by row methods for semidefinite programming

We present a row-by-row (RBR) method for solving semidefinite programming (SDP) problem based on solving a sequence of problems obtained by restricting the n-dimensional positive semidefinite constraint on the matrix X. By fixing any (n-1)-dimensional principal submatrix of X and using its (generalized) Schur complement, the positive semidefinite constraint is reduced to a simple second-order … Read more