Burer-Monteiro guarantees for general semidefinite programs

Consider a semidefinite program (SDP) involving an $n\times n$ positive semidefinite matrix $X$. The Burer-Monteiro method consists in solving a nonconvex program in $Y$, where $Y$ is an $n\times p$ matrix such that $X = Y Y^T$. Despite nonconvexity, Boumal et al. showed that the method provably solves generic equality-constrained SDP’s when $p > \sqrt{2m}$, … Read more

Lower Bounds for the Bandwidth Problem

The Bandwidth Problem asks for a simultaneous permutation of the rows and columns of the adjacency matrix of a graph such that all nonzero entries are as close as possible to the main diagonal. This work focuses on investigating novel approaches to obtain lower bounds for the bandwidth problem. In particular, we use vertex partitions … Read more

Noisy Euclidean Distance Matrix Completion with a Single Missing Node

We present several solution techniques for the noisy single source localization problem, i.e.,~the Euclidean distance matrix completion problem with a single missing node to locate under noisy data. For the case that the sensor locations are fixed, we show that this problem is implicitly convex, and we provide a purification algorithm along with the SDP … Read more

On semi-infinite systems of convex polynomial inequalities and polynomial optimization problems

We consider the semi-infinite system of polynomial inequalities of the form \[ \mathbf{K}:=\{x\in\mathbb{R}^m\mid p(x,y)\ge 0,\ \ \forall y\in S\subseteq\mathbb{R}^n\}, \] where $p(X,Y)$ is a real polynomial in the variables $X$ and the parameters $Y$, the index set $S$ is a basic semialgebraic set in $\mathbb{R}^n$, $-p(X,y)$ is convex in $X$ for every $y\in S$. We … Read more

Exploiting Low-Rank Structure in Semidefinite Programming by Approximate Operator Splitting

In contrast with many other convex optimization classes, state-of-the-art semidefinite programming solvers are yet unable to efficiently solve large scale instances. This work aims to reduce this scalability gap by proposing a novel proximal algorithm for solving general semidefinite programming problems. The proposed methodology, based on the primal-dual hybrid gradient method, allows the presence of … Read more

Tight-and-cheap conic relaxation for the optimal reactive power dispatch problem

The optimal reactive power dispatch (ORPD) problem is an alternating current optimal power flow (ACOPF) problem where discrete control devices for regulating the reactive power, such as shunt elements and tap changers, are considered. The ORPD problem is modelled as a mixed-integer nonlinear optimization problem and its complexity is increased compared to the ACOPF problem, … Read more

An oracle-based projection and rescaling algorithm for linear semi-infinite feasibility problems and its application to SDP and SOCP

We point out that Chubanov’s oracle-based algorithm for linear programming [5] can be applied almost as it is to linear semi-infinite programming (LSIP). In this note, we describe the details and prove the polynomial complexity of the algorithm based on the real computation model proposed by Blum, Shub and Smale (the BSS model) which is … Read more

A Branch-and-Cut Algorithm for Solving Mixed-integer Semidefinite Optimization Problems

This paper is concerned with a cutting-plane algorithm for solving mixed-integer semidefinite optimization (MISDO) problems. In this algorithm, the positive semidefinite constraint is relaxed, and the resultant mixed-integer linear optimization problem is repeatedly solved with valid inequalities for the relaxed constraint. We prove convergence properties of the algorithm. Moreover, to speed up the computation, we … Read more

Time-Varying Semidefinite Programs

We study time-varying semidefinite programs (TV-SDPs), which are semidefinite programs whose data (and solutions) are functions of time. Our focus is on the setting where the data varies polynomially with time. We show that under a strict feasibility assumption, restricting the solutions to also be polynomial functions of time does not change the optimal value … Read more

Semidenite Approximations of Invariant Measures for Polynomial Systems

We consider the problem of approximating numerically the moments and the supports of measures which are invariant with respect to the dynamics of continuousand discrete-time polynomial systems, under semialgebraic set constraints. First, we address the problem of approximating the density and hence the support of an invariant measure which is absolutely continuous with respect to … Read more