Estimates of generalized Hessians for optimal value functions in mathematical programming

The \emph{optimal value function} is one of the basic objects in the field of mathematical optimization, as it allows the evaluation of the variations in the \emph{cost/revenue} generated while \emph{minimizing/maximizing} a given function under some constraints. In the context of stability/sensitivity analysis, a large number of publications have been dedicated to the study of continuity … Read more

Robust Sensitivity Analysis for Linear Programming with Ellipsoidal Perturbation

Given an originally robust optimal decision and allowing perturbation parameters of the linear programming problem to run through a maximum uncertainty set controlled by a variable of perturbation radius, we do robust sensitivity analysis for the robust linear programming problem in two scenarios. One is to keep the original decision still robust optimal, the other … Read more

Perturbation Analysis of Singular Semidefinite Program and Its Application to a Control Problem

We consider the sensitivity of semidefinite programs (SDPs) under perturbations. It is well known that the optimal value changes continuously under perturbations on the right hand side in the case where the Slater condition holds in the primal problems. In this manuscript, we observe by investigating a concrete SDP that the optimal value can be … Read more

Efficient Symmetric Hessian Propagation for Direct Optimal Control

Direct optimal control algorithms first discretize the continuous-time optimal control problem and then solve the resulting finite dimensional optimization problem. If Newton type optimization algorithms are used for solving the discretized problem, accurate first as well as second order sensitivity information needs to be computed. This article develops a novel approach for computing Hessian matrices … Read more

Strong duality and sensitivity analysis in semi-infinite linear programming

Finite-dimensional linear programs satisfy strong duality (SD) and have the “dual pricing” (DP) property. The (DP) property ensures that, given a sufficiently small perturbation of the right-hand-side vector, there exists a dual solution that correctly “prices” the perturbation by computing the exact change in the optimal objective function value. These properties may fail in semi-infinite … Read more

Robust Sensitivity Analysis of the Optimal Value of Linear Programming

We propose a framework for sensitivity analysis of linear programs (LPs) in minimiza- tion form, allowing for simultaneous perturbations in the objective coefficients and right-hand sides, where the perturbations are modeled in a compact, convex uncertainty set. This framework unifies and extends multiple approaches for LP sensitivity analysis in the literature and has close ties … Read more

Generic properties for semialgebraic programs

In this paper we study genericity for the following parameterized class of nonlinear programs: \begin{eqnarray*} \textrm{minimize } f_u(x) := f(x) – \langle u, x \rangle \quad \textrm{subject to } \quad x \in S, \end{eqnarray*} where $f \colon \mathbb{R}^n \rightarrow \mathbb{R}$ is a polynomial function and $S \subset \mathbb{R}^n$ is a closed semialgebraic set, which is … Read more

Certificates of Optimality and Sensitivity Analysis using Generalized Subadditive Generator Functions: A test study on Knapsack Problems

We introduce a family of subadditive functions called Generator Functions for mixed integer linear programs. These functions were previously defined for pure integer programs with non-negative entries by Klabjan [13]. They are feasible in the subadditive dual and we show that they are enough to achieve strong duality. Several properties of the functions are shown. … Read more

Sensitivity analysis of semidefinite programs without strong duality

Suppose that we are given a feasible conic program with a finite optimal value and with strong duality failing. It is known that there are small perturbations of the problem data that lead to relatively big changes in the optimal value. We quantify the notion of big change in the case of a semidefinite program … Read more

Topology Optimization for Magnetic Circuits dedicated to Electric Propulsion

Abstract—In this paper, we present a method to solve inverse problems of electromagnetic circuit design which are formulated as a topology optimization problem. Indeed, by imposing the magnetic field inside a region, we search a best material distribution into variable domains. In order to perform this, we minimize the quadratic error between the prescribed magnetic … Read more