Discrete Approximations of a Controlled Sweeping Process

The paper is devoted to the study of a new class of optimal control problems governed by the classical Moreau sweeping process with the new feature that the polyhedral moving set is not fixed while controlled by time-dependent functions. The dynamics of such problems is described by dissipative non-Lipschitzian differential inclusions with state constraints of … Read more


This paper is devoted to the study of metric subregularity and strong subregularity of any positive order $q$ for set-valued mappings in finite and infinite dimensions. While these notions have been studied and applied earlier for $q=1$ and—to a much lesser extent—for $q\in(0,1)$, no results are available for the case $q>1$. We derive characterizations of … Read more

Calmness of linear programs under perturbations of all data: characterization and modulus

This paper provides operative point-based formulas (only involving the nominal data, and not data in a neighborhood) for computing or estimating the calmness modulus of the optimal set (argmin) mapping in linear optimization under uniqueness of nominal optimal solutions. Our analysis is developed in two different parametric settings. First, in the framework of canonical perturbations … Read more

Variational Analysis of Circular Cone Programs

This paper conducts variational analysis of circular programs, which form a new class of optimization problems in nonsymmetric conic programming important for optimization theory and its applications. First we derive explicit formulas in terms of the initial problem data to calculate various generalized derivatives/coderivatives of the projection operator associated with the circular cone. Then we … Read more

Alternating projections and coupling slope

We consider the method of alternating projections for finding a point in the intersection of two possibly nonconvex closed sets. We present a local linear convergence result that makes no regularity assumptions on either set (unlike previous results), while at the same time weakening standard transversal intersection assumptions. The proof grows out of a study … Read more

Full stability of locally optimal solutions in second-order cone programming

The paper presents complete characterizations of Lipschitzian full stability of locally optimal solutions to problems of second-order cone programming (SOCP) expressed entirely in terms of their initial data. These characterizations are obtained via appropriate versions of the quadratic growth and strong second-order sucient conditions under the corresponding constraint quali cations. We also establish close relationships between … Read more

KKT Reformulation and Necessary Conditions for Optimality in Nonsmooth Bilevel Optimization

For a long time, the bilevel programming problem has essentially been considered as a special case of mathematical programs with equilibrium constraints (MPECs), in particular when the so-called KKT reformulation is in question. Recently though, this widespread believe was shown to be false in general. In this paper, other aspects of the difference between both … Read more

Second-order growth, tilt stability, and metric regularity of the subdifferential

This paper sheds new light on several interrelated topics of second-order variational analysis, both in finite and infinite-dimensional settings. We establish new relationships between second-order growth conditions on functions, the basic properties of metric regularity and subregularity of the limiting subdifferential, tilt-stability of local minimizers, and positive definiteness/semidefiniteness properties of the second-order subdifferential (or generalized … Read more

Calmness modulus of linear semi-infinite programs

Our main goal is to compute or estimate the calmness modulus of the argmin mapping of linear semi-infinite optimization problems under canonical perturbations, i.e., perturbations of the objective function together with continuous perturbations of the right-hand side of the constraint system (with respect to an index ranging in a compact Hausdorff space). Specifically, we provide … Read more

New Fractional Error Bounds for Nonconvex Polynomial Systems with Applications to Holderian Stability in Optimization and Spectral Theory of Tensors

In this paper we derive new fractional error bounds for nonconvex polynomial systems with exponents explicitly determined by the dimension of the underlying space and the number/degree of the involved polynomials. The results obtained do not require any regularity assumptions and resolve, in particular, some open questions posed in the literature. The developed techniques are … Read more