An (\sqrt{n}\log \frac{(x^0)^Ts^0}{\epsilon})$ iteration primal-dual path-following method, based on wide neighborhoods and large updates, for monotone linear complementarity problems

In this paper we propose a new class of primal-dual path-following interior point algorithms for solving monotone linear complementarity problems. At each iteration, the method would select a target on the central path with a large update from the current iterate, and then the Newton method is used to get the search directions, followed by … Read more

Cover Inequalities for Binary-Integer Knapsack Constraints

We consider knapsack constraints involving one general integer and many binary variables. We introduce the concept of a cover for such a constraint and we construct a new family of valid inequalities based on this concept. We generalize this idea to extended covers, and we propose a specialized lifting procedure for cover inequalities. Finally, we … Read more

Conditional Risk Mappings

We introduce an axiomatic definition of a conditional convex risk mapping and we derive its properties. In particular, we prove a representation theorem for conditional risk mappings in terms of conditional expectations. We also develop dynamic programming relations for multistage optimization problems involving conditional risk mappings. Citation Preprint Article Download View Conditional Risk Mappings

Convexification of Stochastic Ordering

We consider sets defined by the usual stochastic ordering relation and by the second order stochastic dominance relation. Under fairy general assumptions we prove that in the space of integrable random variables the closed convex hull of the first set is equal to the second set. Article Download View Convexification of Stochastic Ordering

The Complexity of Maximum Matroid-Greedoid Intersection and Weighted Greedoid Maximization

The maximum intersection problem for a matroid and a greedoid, given by polynomial-time oracles, is shown $NP$-hard by expressing the satisfiability of boolean formulas in $3$-conjunctive normal form as such an intersection. The corresponding approximation problems are shown $NP$-hard for certain approximation performance bounds. Moreover, some natural parameterized variants of the problem are shown $W[P]$-hard. … Read more

Batched Bin Packing

We introduce and study the batched bin packing problem (BBPP), a bin packing problem in which items become available for packing incrementally, one batch at a time. A batched algorithm must pack a batch before the next batch becomes known. A batch may contain several items; the special case when each batch consists of merely … Read more

A filter-trust-region method for unconstrained optimization

A new filter-trust-region algorithm for solving unconstrained nonlinear optimization problems is introduced. Based on the filter technique introduced by Fletcher and Leyffer, it extends an existing technique of Gould, Leyffer and Toint (SIAM J. Optim., to appear 2004) for nonlinear equations and nonlinear least-squares to the fully general unconstrained optimization problem. The new algorithm is … Read more

Portfolio Optimization with Stochastic Dominance Constraints

We consider the problem of constructing a portfolio of finitely many assets whose returns are described by a discrete joint distribution. We propose a new portfolio optimization model involving stochastic dominance constraints on the portfolio return. We develop optimality and duality theory for these models. We construct equivalent optimization models with utility functions. Numerical illustration … Read more

Optimization of Convex Risk Functions

We consider optimization problems involving convex risk functions. By employing techniques of convex analysis and optimization theory in vector spaces of measurable functions we develop new representation theorems for risk models, and optimality and duality theory for problems involving risk functions. Citation Preprint Article Download View Optimization of Convex Risk Functions