Invariance and efficiency of convex representations

We consider two notions for the representations of convex cones: $G$-representation and lifted-$G$-representation. The former represents a convex cone as a slice of another; the latter allows in addition, the usage of auxiliary variables in the representation. We first study the basic properties of these representations. We show that some basic properties of convex cones … Read more

Solving Multistage Asset Investment Problems by the Sample Average Approximation Method

The vast size of real world stochastic programming instances requires sampling to make them practically solvable. In this paper we extend the understanding of how sampling affects the solution quality of multistage stochastic programming problems. We present a new heuristic for determining good feasible solutions for a multistage decision problem. For power and log-utility functions … Read more

A Global Optimization Problem in Portfolio Selection

This paper deals with the issue of buy-in thresholds in portfolio optimization using the Markowitz approach. Optimal values of invested fractions calculated using, for instance, the classical minimum-risk problem can be unsatisfactory in practice because they imply that very small amounts of certain assets are purchased. Realistically, we want to impose a disjoint restriction so … Read more

Variational Analysis of Functions of the Roots of Polynomials

The Gauss-Lucas Theorem on the roots of polynomials nicely simplifies calculating the subderivative and regular subdifferential of the abscissa mapping on polynomials (the maximum of the real parts of the roots). This paper extends this approach to more general functions of the roots. By combining the Gauss-Lucas methodology with an analysis of the splitting behavior … Read more

Solving the Vehicle Routing Problem with Stochastic Demands using the Cross Entropy Method

An alternate formulation of the classical vehicle routing problem with stochastic demands (VRPSD)is considered. We propose a new heuristic method to solve the problem. The algorithm is a modified version of the so-called Cross-Entropy method, which has been proposed in the literature as a heuristics for deterministic combinatorial optimization problems based upon concepts of rare-event … Read more

Additional properties of shifted valiable metric methods.

Some supplements to shifted variable metric or quasi-Newton methods for unconstrained minimization are given, including new limited-memory methods. Global convergence of these methods can be established for convex sufficiently smooth functions. Some encouraging numerical experience is reported. Citation Report No. V899-03, Institute of Computer Scienc, Czech Academy of Sciences, Prague, December 2003 (revised May 2004). … Read more

Stationarity and Regularity of Set Systems

Extremality, stationarity and regularity notions for a system of closed sets in a normed linear space are investigated. The equivalence of different abstract “extremal” settings in terms of set systems and multifunctions is proved. The dual necessary and sufficient conditions of weak stationarity (the Extended extremal principle) are presented for the case of an Asplund … Read more

Solving large scale linear multicommodity flow problems with an active set strategy and Proximal-ACCPM

In this paper, we propose to solve the linear multicommodity flow problem using a partial Lagrangian relaxation. The relaxation is restricted to the set of arcs that are likely to be saturated at the optimum. This set is itself approximated by an active set strategy. The partial Lagrangian dual is solved with Proximal-ACCPM, a variant … Read more