Behavioral Measures and their Correlation with IPM Iteration Counts on Semi-Definite Programming Problems

We study four measures of problem instance behavior that might account for the observed differences in interior-point method (IPM) iterations when these methods are used to solve semidefinite programming (SDP) problem instances: (i) an aggregate geometry measure related to the primal and dual feasible regions (aspect ratios) and norms of the optimal solutions, (ii) the … Read more

Provisioning Virtual Private Networks under traffic uncertainty

We investigate a network design problem under traffic uncertainty which arises when provisioning Virtual Private Networks (VPNs): given a set of terminals that must communicate with one another, and a set of possible traffic matrices, sufficient capacity has to be reserved on the links of the large underlying public network so as to support all … Read more

Large-scale semidefinite programs in electronic structure calculation

Employing the variational approach having the two-body reduced density matrix (RDM) as variables to compute the ground state energies of atomic-molecular systems has been a long time dream in electronic structure theory in chemical physics/physical chemistry. Realization of the RDM approach has benefited greatly from recent developments in semidefinite programming (SDP). We present the actual … Read more

Sensitivity analysis in convex quadratic optimization: simultaneous perturbation of the objective and right-hand-side vectors

In this paper we study the behavior of Convex Quadratic Optimization problems when variation occurs simultaneously in the right-hand side vector of the constraints and in the coefficient vector of the linear term in the objective function. It is proven that the optimal value function is piecewise-quadratic. The concepts of transition point and invariancy interval … Read more

Two-Stage Robust Network Flow and Design under Demand Uncertainty

We describe a two-stage robust optimization approach for solving network flow and design problems with demand uncertainty. We give an explicit characterization of the first-stage decisions and prove that the corresponding separation problem is NP-hard even for a network flow problem on a bipartite graph. We show, however, that if the second-stage network topology is … Read more

Analysis of a Belgian Chocolate Stabilization Problem

We give a detailed numerical and theoretical analysis of a stabilization problem posed by V. Blondel in 1994. Our approach illustrates the effectiveness of a new gradient sampling algorithm for finding local optimizers of nonsmooth, nonconvex optimization problems arising in control, as well as the power of nonsmooth analysis for understanding variational problems involving polynomial … Read more

On the control of an evolutionary equilibrium in micromagnetics

We formulate an optimal control problem of magnetization in a ferromagnet as a mathematical program with evolutionary equilibrium constraints. The evolutionary nature of the equilibrium is due to the hysteresis behavior of the respective magnetization process. To solve the problem numerically, we adapted the implicit programming technique. The adjoint equations, needed to compute the subgradients … Read more

Global Optimization Toolbox for Maple: An Introduction with Illustrative Applications

This article presents a concise review of the scientific–technical computing system Maple and its application potentials in Operations Research, systems modeling and optimization. The primary emphasis is placed on nonlinear optimization models that may involve complicated functions, and/or may have multiple – global and local – optima. We introduce the Global Optimization Toolbox to solve … Read more

An Optimization Approach to Computing the Implied Volatility of American Options

We present a method to compute the implied volatility of American options as a mathematical program with equilibrium constraints. The formulation we present is new, as are the convergence results we prove. The algorithm holds the promise of being practical to implement, and we demonstrate some preliminary numerical results to this end. Citation Princeton University … Read more

Finding optimal realignments in sports leagues using a branch-and-cut-and-price approach

The sports team realignment problem can be modelled as $k$-way equipartition: given a complete graph $K_{n}=(V,E)$, with edge weight $c_{e}$ on each edge, partition the vertices $V$ into $k$ divisions that have exactly $S$ vertices, so as to minimize the total weight of the edges that have both endpoints in the same division. In this … Read more