A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs

The theta bodies of a polynomial ideal are a series of semidefinite programming relaxations of the convex hull of the real variety of the ideal. In this paper we construct the theta bodies of the vanishing ideal of cycles in a binary matroid. Applied to cuts in graphs, this yields a new hierarchy of semidefinite … Read more

On String-Averaging for Sparse Problems and On the Split Common Fixed Point Problem

We review the common fixed point problem for the class of directed operators. This class is important because many commonly used nonlinear operators in convex optimization belong to it. We present our recent definition of sparseness of a family of operators and discuss a string-averaging algorithmic scheme that favorably handles the common fixed points problem … Read more

Machine Learning for Global Optimization

In this paper we introduce the LeGO (Learning for Global Optimization) approach for global optimization in which machine learning is used to predict the outcome of a computationally expensive global optimization run, based upon a suitable training performed by standard runs of the same global optimization method. We propose to use a Support Vector Machine … Read more

Semidefinite programming and sums of hermitian squares of noncommutative polynomials

An algorithm for finding sums of hermitian squares decompositions for polynomials in noncommuting variables is presented. The algorithm is based on the “Newton chip method”, a noncommutative analog of the classical Newton polytope method, and semide finite programming. CitationI. Klep and J. Povh. Semide nite programming and sums of hermitian squares of noncommutative polynomials. J. Pure Appl. … Read more

Basis Reduction, and the Complexity of Branch-and-Bound

The classical branch-and-bound algorithm for the integer feasibility problem has exponential worst case complexity. We prove that it is surprisingly efficient on reformulations, in which the columns of the constraint matrix are short, and near orthogonal, i.e. a reduced basis of the generated lattice; when the entries of A (i.e. the dense part of the … Read more

A Note on the Behavior of the Randomized Kaczmarz Algorithm of Strohmer and Vershynin

In a recent paper by Strohmer and Vershynin (J. Fourier Anal. Appl. 15:262–278, 2009) a “randomized Kaczmarz algorithm” is proposed for solving consistent systems of linear equations {ai, x = bi }m i=1. In that algorithm the next equation to be used in an iterative Kaczmarz process is selected with a probability proportional to ai2. … Read more

Seminorm-induced oblique projections for sparse nonlinear convex feasibility problems

Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using generalized … Read more

Block-Iterative and String-Averaging Projection Algorithms in Proton Computed Tomography Image Reconstruction

Proton computed tomography (pCT) is an imaging modality that has been suggested as a means for reducing the range uncertainty during proton radiation treatments. By measuring the spatial location of individual protons pre- and post-patient, as well as the energy lost along the proton path, three dimensional maps of patient water equivalent electron densities can … Read more

On the Accuracy of Uniform Polyhedral Approximations of the Copositive Cone

We consider linear optimization problems over the cone of copositive matrices. Such conic optimization problems, called {\em copositive programs}, arise from the reformulation of a wide variety of difficult optimization problems. We propose a hierarchy of increasingly better outer polyhedral approximations to the copositive cone. We establish that the sequence of approximations is exact in … Read more

An Implementable Proximal Point Algorithmic Framework for Nuclear Norm Minimization

The nuclear norm minimization problem is to find a matrix with the minimum nuclear norm subject to linear and second order cone constraints. Such a problem often arises from the convex relaxation of a rank minimization problem with noisy data, and arises in many fields of engineering and science. In this paper, we study inexact … Read more