Recovering low-rank and sparse components of matrices from incomplete and noisy observations

Many applications arising in a variety of fields can be well illustrated by the task of recovering the low-rank and sparse components of a given matrix. Recently, it is discovered that this NP-hard task can be well accomplished, both theoretically and numerically, via heuristically solving a convex relaxation problem where the widely-acknowledged nuclear norm and … Read more

Analysis of Stochastic Dual Dynamic Programming Method

In this paper we discuss statistical properties and rates of convergence of the Stochastic Dual Dynamic Programming (SDDP) method applied to multistage linear stochastic programming problems. We assume that the underline data process is stagewise independent and consider the framework where at first a random sample from the original (true) distribution is generated and consequently … Read more

Python Optimization Modeling Objects (Pyomo)

We describe Pyomo, an open source tool for modeling optimization applications in Python. Pyomo can be used to de fine symbolic problems, create concrete problem instances, and solve these instances with standard solvers. Pyomo provides a capability that is commonly associated with algebraic modeling languages such as AMPL, AIMMS, and GAMS, but Pyomo’s modeling objects are … Read more

The Balanced Academic Curriculum Problem Revisited

The Balanced Academic Curriculum Problem (BACP) consists in assigning courses to teaching terms satisfying prerequisites and balancing the credit course load within each term. The BACP is part of the CSPLib with three benchmark instances, but its formulation is simpler than the problem solved in practice by the universities. In this article, we introduce a … Read more

Constrained Dogleg Methods for nonlinear systems with simple bounds

We focus on the numerical solution of medium scale bound-constrained systems of nonlinear equations. In this context, we consider an affine-scaling trust region approach that allows a great flexibility in choosing the scaling matrix used to handle the bounds. The method is based on a dogleg procedure tailored for constrained problems and so, it is … Read more

On affine scaling inexact dogleg methods for bound-constrained nonlinear systems

A class of trust-region methods for large scale bound-constrained systems of nonlinear equations is presented. The methods in this class follow the so called affine-scaling approach and can efficiently handle large scale problems. At each iteration, a suitably scaled region around the current approximate solution is defined and, within such a region, the norm of … Read more

Fast Alternating Linearization Methods for Minimizing the Sum of Two Convex Functions

We present in this paper first-order alternating linearization algorithms based on an alternating direction augmented Lagrangian approach for minimizing the sum of two convex functions. Our basic methods require at most $O(1/\epsilon)$ iterations to obtain an $\epsilon$-optimal solution, while our accelerated (i.e., fast) versions of them require at most $O(1/\sqrt{\epsilon})$ iterations, with little change in … Read more

Fast Multiple Splitting Algorithms for Convex Optimization

We present in this paper two different classes of general $K$-splitting algorithms for solving finite-dimensional convex optimization problems. Under the assumption that the function being minimized has a Lipschitz continuous gradient, we prove that the number of iterations needed by the first class of algorithms to obtain an $\epsilon$-optimal solution is $O(1/\epsilon)$. The algorithms in … Read more

On the Effectiveness of Projection Methods for Convex Feasibility

The effectiveness of projection methods for solving systems of linear inequalities is investigated. It is shown that they have a computational advantage over some alternatives and that this makes them successful in real-world applications. This is supported by experimental evidence provided in this paper on problems of various sizes (up to tens of thousands of … Read more

Expected Future Value Decomposition Based Bid Price Generation for Large-Scale Network Revenue Management

This paper studies a multi-stage stochastic programming model for large-scale network revenue management. We solve the model by means of the so-called Expected Future Value (EFV) decomposition via scenario analysis, estimating the impact of the decisions made at a given stage on the objective function value related to the future stages. The EFV curves are … Read more