On Doubly Positive Semidefinite Programming Relaxations

Recently, researchers have been interested in studying the semidefinite programming (SDP) relaxation model, where the matrix is both positive semidefinite and entry-wise nonnegative, for quadratically constrained quadratic programming (QCQP). Comparing to the basic SDP relaxation, this doubly-positive SDP model possesses additional O(n2) constraints, which makes the SDP solution complexity substantially higher than that for the … Read more

Two stage stochastic equilibrium problems with equilibrium constraints: modeling and numerical schemes

This paper presents a two stage stochastic equilibrium problem with equilibrium constraints(SEPEC) model. Some source problems which motivate the model are discussed. Monte Carlo sampling method is applied to solve the SEPEC. The convergence analysis on the statistical estimators of Nash equilibria and Nash stationary points are presented. ArticleDownload View PDF

Some Results on the Strength of Relaxations of Multilinear Functions

We study approaches for obtaining convex relaxations of global optimization problems containing multilinear functions. Specifically, we compare the concave and convex envelopes of these functions with the relaxations that are obtained with a standard relaxation approach, due to McCormick. The standard approach reformulates the problem to contain only bilinear terms and then relaxes each term … Read more

The Approach of Moments for Polynomial Equations

In this article we present the moment based approach for computing all real solutions of a given system of polynomial equations. This approach builds upon a lifting method for constructing semidefinite relaxations of several nonconvex optimization problems, using sums of squares of polynomials and the dual theory of moments. A crucial ingredient is a semidefinite … Read more

Randomized heuristics for the regenerator location problem

Telecommunication systems make use of optical signals to transmit information. The strength of a signal in an optical network deteriorates and loses power as it gets farther from the source, mainly due to attenuation. Therefore, to enable the signal to arrive at its intended destination with good quality, it is necessary to regenerate it periodically … Read more

Distributionally Robust Joint Chance Constraints with Second-Order Moment Information

We develop tractable semidefinite programming (SDP) based approximations for distributionally robust individual and joint chance constraints, assuming that only the first- and second-order moments as well as the support of the uncertain parameters are given. It is known that robust chance constraints can be conservatively approximated by Worst-Case Conditional Value-at-Risk (CVaR) constraints. We first prove … Read more

Approximating Stationary Points of Stochastic Mathematical Programs with Equilibrium Constraints via Sample Averaging

We investigate sample average approximation of a general class of one-stage stochastic mathematical programs with equilibrium constraints. By using graphical convergence of unbounded set-valued mappings, we demonstrate almost sure convergence of a sequence of stationary points of sample average approximation problems to their true counterparts as the sample size increases. In particular we show the … Read more

Dynamic Portfolio Optimization with Transaction Costs: Heuristics and Dual Bounds

We consider the problem of dynamic portfolio optimization in a discrete-time, finite-horizon setting. Our general model considers risk aversion, portfolio constraints (e.g., no short positions), return predictability, and transaction costs. This problem is naturally formulated as a stochastic dynamic program. Unfortunately, with non-zero transaction costs, the dimension of the state space is at least as … Read more

Accelerated Block-Coordinate Relaxation for Regularized Optimization

We discuss minimization of a smooth function to which is added a separable regularization function that induces structure in the solution. A block-coordinate relaxation approach with proximal linearized subproblems yields convergence to critical points, while identification of the optimal manifold (under a nondegeneracy condition) allows acceleration techniques to be applied on a reduced space. The … Read more

Generalized Decision Rule Approximations for Stochastic Programming via Liftings

Stochastic programming provides a versatile framework for decision-making under uncertainty, but the resulting optimization problems can be computationally demanding. It has recently been shown that, primal and dual linear decision rule approximations can yield tractable upper and lower bounds on the optimal value of a stochastic program. Unfortunately, linear decision rules often provide crude approximations … Read more