Sampling Decisions in Optimum Experimental Design in the Light of Pontryagin’s Maximum Principle

Optimum Experimental Design (OED) problems are optimization problems in which an experimental setting and decisions on when to measure – the so-called sampling design – are to be determined such that a follow-up parameter estimation yields accurate results for model parameters. In this paper we use the interpretation of OED as optimal control problems with … Read more

A Matrix-Free Approach For Solving The Gaussian Process Maximum Likelihood Problem

Gaussian processes are the cornerstone of statistical analysis in many application ar- eas. Nevertheless, most of the applications are limited by their need to use the Cholesky factorization in the computation of the likelihood. In this work, we present a matrix-free approach for comput- ing the solution of the maximum likelihood problem involving Gaussian processes. … Read more

DIFFERENCE FILTER PRECONDITIONING FOR LARGE COVARIANCE MATRICES

In many statistical applications one must solve linear systems corresponding to large, dense, and possibly irregularly structured covariance matrices. These matrices are often ill- conditioned; for example, the condition number increases at least linearly with respect to the size of the matrix when observations of a random process are obtained from a xed domain. This … Read more

A short derivation of the Kuhn-Tucker conditions

The Kuhn-Tucker conditions have been used to derive many significant results in economics. However, thus far, their derivation has been a little bit troublesome. The author directly derives the Kuhn-Tucker conditions by applying a corollary of Farkas’s lemma under the Mangasarian-Fromovitz constraint qualification. CitationDiscussion Paper Series A, No. 2011-234, Graduate School of Economics and Business … Read more

A Branch-and-Cut Decomposition Algorithm for Solving Chance-Constrained Mathematical Programs with Finite Support

We present a new approach for exactly solving chance-constrained mathematical programs having discrete distributions with nite support and random polyhedral constraints. Such problems have been notoriously difficult to solve due to nonconvexity of the feasible region, and most available methods are only able to nd provably good solutions in certain very special cases. Our approach … Read more

Implementation of a block-decomposition algorithm for solving large-scale conic semidefinite programming problems

In this paper, we consider block-decomposition first-order methods for solving large-scale conic semidefinite programming problems. Several ingredients are introduced to speed-up the method in its pure form such as: an aggressive choice of stepsize for performing the extragradient step; use of scaled inner products in the primal and dual spaces; dynamic update of the scaled … Read more

Neighborhood based heuristics for a Two-level Hierarchical Location Problem with modular node capacities

In many telecommunication network architectures a given set of client nodes must be served by different kinds of facility, which provide di fferent services and have diff erent capabilities. Such facilities must be located and dimensioned in the design phase. We tackle a particular location problem in which two sets of facilities, mid level and high level, … Read more

An Accelerated Hybrid Proximal Extragradient Method for Convex Optimization and its Implications to Second-Order Methods

This paper presents an accelerated variant of the hybrid proximal extragradient (HPE) method for convex optimization, referred to as the accelerated HPE (A-HPE) method. Iteration-complexity results are established for the A-HPE method, as well as a special version of it, where a large stepsize condition is imposed. Two specific implementations of the A-HPE method are … Read more

A Computational Study and Survey of Methods for the Single-Row Facility Layout Problem

The single row facility layout problem (SRFLP) is an NP-hard combinatorial optimization problem that is concerned with the arrangement of n departments of given lengths on a line so as to minimize the weighted sum of the distances between department pairs. (SRFLP) is the one-dimensional version of the facility layout problem that seeks to arrange … Read more

Stochastic programs without duality gaps

This paper studies dynamic stochastic optimization problems parametrized by a random variable. Such problems arise in many applications in operations research and mathematical finance. We give sufficient conditions for the existence of solutions and the absence of a duality gap. Our proof uses extended dynamic programming equations, whose validity is established under new relaxed conditions … Read more