An (n\log(n))$ Algorithm for Projecting Onto the Ordered Weighted $\ell_1$ Norm Ball

The ordered weighted $\ell_1$ (OWL) norm is a newly developed generalization of the Octogonal Shrinkage and Clustering Algorithm for Regression (OSCAR) norm. This norm has desirable statistical properties and can be used to perform simultaneous clustering and regression. In this paper, we show how to compute the projection of an $n$-dimensional vector onto the OWL … Read more

Cutting planes from extended LP formulations

Given a mixed-integer set defined by linear inequalities and integrality requirements on some of the variables, we consider extended formulations of its continuous (LP) relaxation and study the effect of adding cutting planes in the extended space. In terms of optimization, extended LP formulations do not lead to better bounds as their projection onto the … Read more

New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms

In this paper, we further establish two types of DC (Difference of Convex functions) programming for $l_0$ sparse reconstruction. Our DC objective functions are specified to the difference of two norms. One is the difference of $l_1$ and $l_{\sigma_q}$ norms (DC $l_1$-$l_{\sigma_q}$ for short) where $l_{\sigma_q}$ is the $l_1$ norm of the $q$-term ($q\geq1$) best … Read more

Active-Set Methods for Convex Quadratic Programming

Computational methods are proposed for solving a convex quadratic program (QP). Active-set methods are defined for a particular primal and dual formulation of a QP with general equality constraints and simple lower bounds on the variables. In the first part of the paper, two methods are proposed, one primal and one dual. These methods generate … Read more

Optimization of multiple receivers solar power tower systems

In this article a new procedure to optimize the design of a solar power tower system with multiple receivers is presented. The variables related to the receivers (height, aperture tilt angle, azimuth angle and aperture size) as well as the heliostat field layout are optimized seeking to minimize the levelized cost of thermal energy. This … Read more

A forward-backward-forward differential equation and its asymptotic properties

In this paper, we approach the problem of finding the zeros of the sum of a maximally monotone operator and a monotone and Lipschitz continuous one in a real Hilbert space via an implicit forward-backward-forward dynamical system with nonconstant relaxation parameters and stepsizes of the resolvents. Besides proving existence and uniqueness of strong global solutions … Read more

The cone condition and nonsmoothness in linear generalized Nash games

We consider linear generalized Nash games and introduce the so-called cone condition which characterizes the smoothness of the Nikaido-Isoda function under weak assumptions. The latter mapping arises from a reformulation of the generalized Nash equilibrium problem as a possibly nonsmooth optimization problem. Other regularity conditions like LICQ or SMFC(Q) are only sufficient for smoothness, but … Read more

New bounds for the max-hBccut and chromatic number of a graph

We consider several semidefinite programming relaxations for the max-$k$-cut problem, with increasing complexity. The optimal solution of the weakest presented semidefinite programming relaxation has a closed form expression that includes the largest Laplacian eigenvalue of the graph under consideration. This is the first known eigenvalue bound for the max-$k$-cut when $k>2$ that is applicable to … Read more

A strong polynomial gradient algorithm in Linear Programming

It has been an open question whether the Linear Programming (LP) problem can be solved in strong polynomial time. The simplex algorithm does not offer a polynomial bound, and polynomial algorithms by Khachiyan and Karmarkar don’t have the strong characteristic. The curious fact that non-linear algorithms would be needed to deliver the strongest complexity result … Read more

A weighted Mirror Descent algorithm for nonsmooth convex optimization problem

Large scale nonsmooth convex optimization is a common problem for a range of computational areas including machine learning and computer vision. Problems in these areas contain special domain structures and characteristics. Special treatment of such problem domains, exploiting their structures, can significantly improve the the computational burden. We present a weighted Mirror Descent method to … Read more