Numerical Solution of Linear-Quadratic Optimal Control Problems for Switching System

In this paper we obtained an approach to the optimal switching control problem with unknown switching points which it is described in reference [1, 2]. In reference [1], the authors studied the Decomposition of Linear-Quadratic Optimal Control Problems for Two-Steps Systems. In [1], the authors assumed the switching point t1 is xed in the interval … Read more

Facial reduction heuristics and the motivational example of mixed-integer conic optimization

Facial reduction heuristics are developed in the interest of added performance and reliability in methods for mixed-integer conic optimization. Specifically, the process of branch-and-bound is shown to spawn subproblems for which the conic relaxations are difficult to solve, and the objective bounds of linear relaxations are arbitrarily weak. While facial reduction algorithms already exist to … Read more

On the convergence of stochastic bi-level gradient methods

We analyze the convergence of stochastic gradient methods for bi-level optimization problems. We address two specific cases: first when the outer objective function can be expressed as a finite sum of independent terms, and next when both the outer and inner objective functions can be expressed as finite sums of independent terms. We assume Lipschitz … Read more

Strong Duality and Dual Pricing Properties in Semi-infinite Linear Programming–A Non-Fourier-Motzkin Elimination Approach

The Fourier-Motzkin elimination method has been recently extended to linear inequality systems that have infinitely many inequalities. It has been used in the study of linear semi-infinite programming by Basu, Martin, and Ryan. Following the idea of the conjecture for semi-infinite programming in a paper by Kortanek and Zhang recently published in Optimization, which states … Read more

An O(nm) time algorithm for finding the min length directed cycle in a graph

In this paper, we introduce an $O(nm)$ time algorithm to determine the minimum length directed cycle in a directed network with $n$ nodes and $m$ arcs and with no negative length directed cycles. This result improves upon the previous best time bound of $O(nm + n^2 \log\log n)$. Our algorithm first determines the cycle with … Read more

An empirical analysis of scenario generation methods for stochastic optimization

This work presents an empirical analysis of popular scenario generation methods for stochastic optimization, including quasi-Monte Carlo, moment matching, and methods based on probability metrics, as well as a new method referred to as Voronoi cell sampling. Solution quality is assessed by measuring the error that arises from using scenarios to solve a multi-dimensional newsvendor … Read more

A Distributed Interior-Point KKT Solver for Multistage Stochastic Optimization

Multistage stochastic optimization leads to NLPs over scenario trees that become extremely large when many time stages or fine discretizations of the probability space are required. Interior-point methods are well suited for these problems if the arising huge, structured KKT systems can be solved efficiently, for instance, with a large scenario tree but a moderate … Read more

Gap functions for quasi-equilibria

An approach for solving quasi-equilibrium problems (QEPs) is proposed relying on gap functions, which allow reformulating QEPs as global optimization problems. The (generalized) smoothness properties of a gap function are analysed and an upper estimates of its Clarke directional derivative is given. Monotonicity assumptions on both the equilibrium and constraining bifunctions are a key tool … Read more

City Logistics: Challenges and Opportunities

Today, around 54% of the world’s population lives in urban areas. By 2050, this share is expected to go up significantly. As a result, city logistics, which focuses on the efficient and effective transportation of goods in urban areas while taking into account the negative effects on congestion, safety, and environment, is critical to ensuring … Read more