On geometrical properties of preconditioners in IPMs for classes of block-angular problems

One of the most efficient interior-point methods for some classes of block-angular structured problems solves the normal equations by a combination of Cholesky factorizations and preconditioned conjugate gradient for, respectively, the block and linking constraints. In this work we show that the choice of a good preconditioner depends on geometrical properties of the constraints structure. … Read more

A robust Lagrangian-DNN method for a class of quadratic optimization problems

The Lagrangian-doubly nonnegative (DNN) relaxation has recently been shown to provide effective lower bounds for a large class of nonconvex quadratic optimization problems (QOPs) using the bisection method combined with first-order methods by Kim, Kojima and Toh in 2016. While the bisection method has demonstrated the computational efficiency, determining the validity of a computed lower … Read more

Two-sided linear chance constraints and extensions

We examine the convexity and tractability of the two-sided linear chance constraint model under Gaussian uncertainty. We show that these constraints can be applied directly to model a larger class of nonlinear chance constraints as well as provide a reasonable approximation for a challenging class of quadratic chance constraints of direct interest for applications in … Read more

A joint routing and speed optimization problem

Fuel cost contributes to a significant portion of operating cost in cargo transportation. Though classic routing models usually treat fuel cost as input data, fuel consumption heavily depends on the travel speed, which has led to the study of optimizing speeds over a given fixed route. In this paper, we propose a joint routing and … Read more

Strong mixed-integer formulations for the floor layout problem

The floor layout problem (FLP) tasks a designer with positioning a collection of rectangular boxes on a fixed floor in such a way that minimizes total communication costs between the components. While several mixed integer programming (MIP) formulations for this problem have been developed, it remains extremely challenging from a computational perspective. This work takes … Read more

Beating the SDP bound for the floor layout problem: A simple combinatorial idea

For many Mixed-Integer Programming (MIP) problems, high-quality dual bounds can obtained either through advanced formulation techniques coupled with a state-of-the-art MIP solver, or through Semidefinite Programming (SDP) relaxation hierarchies. In this paper, we introduce an alternative bounding approach that exploits the “combinatorial implosion” effect by solving portions of the original problem and aggregating this information … Read more

The Quadratic Shortest Path Problem: Complexity, Approximability, and Solution Methods

We consider the problem of finding a shortest path in a directed graph with a quadratic objective function (the QSPP). We show that the QSPP cannot be approximated unless P=NP. For the case of a convex objective function, an n-approximation algorithm is presented, where n is the number of nodes in the graph, and APX-hardness … Read more

A decomposition approach for single allocation hub location problems with multiple capacity levels

In this paper we consider an extended version of the classical capacitated single allocation hub location problem in which the size of the hubs must be chosen from a finite and discrete set of allowable capacities. We develop a Lagrangian relaxation approach that exploits the problem structure and decomposes the problem into a set of … Read more

Approximations and Generalized Newton Methods

We study local convergence of generalized Newton methods for both equations and inclusions by using known and new approximations and regularity properties at the solution. Including Kantorovich-type settings, our goal are statements about all (not only some) Newton sequences with appropriate initial points. Our basic tools are results of Klatte-Kummer (2002) and Kummer (1988, 1995), … Read more

Level-set methods for convex optimization

Convex optimization problems arising in applications often have favorable objective functions and complicated constraints, thereby precluding first-order methods from being immediately applicable. We describe an approach that exchanges the roles of the objective and constraint functions, and instead approximately solves a sequence of parametric level-set problems. A zero-finding procedure, based on inexact function evaluations and … Read more