New solution approaches for the maximum-reliability stochastic network interdiction problem

We investigate methods to solve the maximum-reliability stochastic network interdiction problem (SNIP). In this problem, a defender interdicts arcs on a directed graph to minimize an attacker’s probability of undetected traversal through the network. The attacker’s origin and destination are unknown to the defender and assumed to be random. SNIP can be formulated as a … Read more

On types of degenerate critical points of real polynomial functions

In this paper, we consider the problem of identifying the type (local minimizer, maximizer or saddle point) of a given isolated real critical point $c$, which is degenerate, of a multivariate polynomial function $f$. To this end, we introduce the definition of faithful radius of $c$ by means of the curve of tangency of $f$. … Read more

A Scalable Global Optimization Algorithm for Stochastic Nonlinear Programs

We propose a global optimization algorithm for stochastic nonlinear programs that uses a specialized spatial branch and bound (BB) strategy to exploit the nearly decomposable structure of the problem. In particular, at each node in the BB scheme, a lower bound is constructed by relaxing the so-called non-anticipativity constraints and an upper bound is constructed … Read more

Improved second-order evaluation complexity for unconstrained nonlinear optimization using high-order regularized models

The unconstrained minimization of a sufficiently smooth objective function $f(x)$ is considered, for which derivatives up to order $p$, $p\geq 2$, are assumed to be available. An adaptive regularization algorithm is proposed that uses Taylor models of the objective of order $p$ and that is guaranteed to find a first- and second-order critical point in … Read more

Electric Power Infrastructure Planning: Mixed-Integer Programming Model and Nested Decomposition Algorithm

This paper addresses the long-term planning of electric power infrastructures considering high renewable penetration. To capture the intermittency of these sources, we propose a deterministic multi-scale Mixed-Integer Linear Programming (MILP) formulation that simultaneously considers annual generation investment decisions and hourly operational decisions. We adopt judicious approximations and aggregations to improve its tractability. Moreover, to overcome … Read more

Joint Inventory and Revenue Management with Removal Decisions

We study the problem of a retailer that maximizes profit through joint replenishment, pricing and removal decisions. This problem is motivated by the observation that retailers usually retain rights to remove inventory from their network either by returning it to the suppliers or through liquidation in the face of random demand and capacity constraints. We … Read more

Payment Mechanisms for Electricity Markets with Uncertain Supply

This paper provides a framework for deriving payment mechanisms for intermittent, flexible and inflexible electricity generators who are dispatched according to the optimal solution of a stochastic program that minimizes the expected cost of generation plus deviation. The first stage corresponds to a pre-commitment decision, and the second stage corresponds to real-time generation that adapts … Read more

Integer Optimization with Penalized Fractional Values: The Knapsack Case

We consider integer optimization problems where variables can potentially take fractional values, but this occurrence is penalized in the objective function. This general situation has relevant examples in scheduling (preemption), routing (split delivery), cutting and telecommunications, just to mention a few. However, the general case in which variables integrality can be relaxed at cost of … Read more

An improved approximation algorithm for the covering 0-1 integer program

We present an improved approximation algorithm for the covering 0-1 integer program (CIP), a well-known problem as a natural generalization of the set cover problem. Our algorithm uses a primal-dual algorithm for CIP by Fujito (2004) as a subroutine and achieves an approximation ratio of (f- (f-1)/m) when m is greater than or equal to … Read more

A Hierarchical Alternating Direction Method of Multipliers for Fully Distributed Unit Commitment

Abstract—This paper discusses a hierarchical alternating direction method of multipliers (ADMM) approach for the unit commitment (UC) problem in a fully distributed manner. Decentralized unit commitment operation schemes have several advantages when compared with the traditional centralized management system for smart grid. Specifically, decentralized management is more flexible, less computationally intensive, and easier to implement … Read more