Iteratively Linearized Reweighted Alternating Direction Method of Multipliers for a Class of Nonconvex Problems

In this paper, we consider solving a class of nonconvex and nonsmooth problems frequently appearing in signal processing and machine learning research. The traditional alternating direction method of multipliers encounters troubles in both mathematics and computations in solving the nonconvex and nonsmooth subproblem. In view of this, we propose a reweighted alternating direction method of … Read more

Inner Conditions for Error Bounds and Metric Subregulerity of Multifunctions

We introduce a new class of sets, functions and multifunctions which is shown to be large and to enjoy some nice common properties with the convex setting. Error bounds for objects attached to this class are characterized in terms of inner conditions of Abadie’s type, that is conditions bearing on normal cones and coderivatives at … Read more

A convergence frame for inexact nonconvex and nonsmooth algorithms and its applications to several iterations

In this paper, we consider the convergence of an abstract inexact nonconvex and nonsmooth algorithm. We promise a pseudo sufficient descent condition and a pseudo relative error condition, which both are related to an auxiliary sequence, for the algorithm; and a continuity condition is assumed to hold. In fact, a wide of classical inexact nonconvex … Read more

Worst-case convergence analysis of gradient and Newton methods through semidefinite programming performance estimation

We provide new tools for worst-case performance analysis of the gradient (or steepest descent) method of Cauchy for smooth strongly convex functions, and Newton’s method for self-concordant functions. The analysis uses semidefinite programming performance estimation, as pioneered by Drori en Teboulle [Mathematical Programming, 145(1-2):451–482, 2014], and extends recent performance estimation results for the method of … Read more

An incremental mirror descent subgradient algorithm with random sweeping and proximal step

We investigate the convergence properties of incremental mirror descent type subgradient algorithms for minimizing the sum of convex functions. In each step we only evaluate the subgradient of a single component function and mirror it back to the feasible domain, which makes iterations very cheap to compute. The analysis is made for a randomized selection … Read more

Same-Day Delivery with Drone Resupply

Unmanned Aerial Vehicles (UAVs), commonly referred to as drones, have recently seen an increased level of interest as their potential use in same-day home delivery has been promoted and advocated by large retailers and courier delivery companies. We introduce a novel way to exploit drones in same-day home delivery settings: drone resupply. We consider a … Read more

Convergence Analysis of Processes with Valiant Projection Operators in Hilbert Space

Convex feasibility problems require to find a point in the intersection of a finite family of convex sets. We propose to solve such problems by performing set-enlargements and applying a new kind of projection operators called valiant projectors. A valiant projector onto a convex set implements a special relaxation strategy, proposed by Goffin in 1971, … Read more

Perturbation analysis of a class of conic programming problems under Jacobian uniqueness conditions

We consider the stability of a class of parameterized conic programming problems which are more general than the C2-smooth parameterization. We show that when the Karush-Kuhn-Tucker (KKT) condition, the constraint nondegeneracy condition, the strict complementary condition and the second order sucient condition (named as Jacobian uniqueness conditions here) are satis ed at a feasible point of … Read more

Modeling Time-dependent Randomness in Stochastic Dual Dynamic Programming

We consider the multistage stochastic programming problem where uncertainty enters the right-hand sides of the problem. Stochastic Dual Dynamic Programming (SDDP) is a popular method to solve such problems under the assumption that the random data process is stagewise independent. There exist two approaches to incorporate dependence into SDDP. One approach is to model the … Read more

Complementarity-Based Nonlinear Programming Techniques for Optimal Mixing in Gas Networks

We consider nonlinear and nonsmooth mixing aspects in gas transport optimization problems. As mixed-integer reformulations of pooling-type mixing models already render small-size instances computationally intractable, we investigate the applicability of smooth nonlinear programming techniques for equivalent complementarity-based reformulations. Based on recent results for remodeling piecewise affine constraints using an inverse parametric quadratic programming approach, we … Read more