The convex hull of a quadratic constraint over a polytope

A quadratically constrained quadratic program (QCQP) is an optimization problem in which the objective function is a quadratic function and the feasible region is defined by quadratic constraints. Solving non-convex QCQP to global optimality is a well-known NP-hard problem and a traditional approach is to use convex relaxations and branch-and-bound algorithms. This paper makes a … Read more

Reinforcement Learning via Parametric Cost Function Approximation for Multistage Stochastic Programming

The most common approaches for solving stochastic resource allocation problems in the research literature is to either use value functions (“dynamic programming”) or scenario trees (“stochastic programming”) to approximate the impact of a decision now on the future. By contrast, common industry practice is to use a deterministic approximation of the future which is easier … Read more

A unified framework for Bregman proximal methods: subgradient, gradient, and accelerated gradient schemes

We provide a unified framework for analyzing the convergence of Bregman proximal first-order algorithms for convex minimization. Our framework hinges on properties of the convex conjugate and gives novel proofs of the convergence rates of the Bregman proximal subgradient, Bregman proximal gradient, and a new accelerated Bregman proximal gradient algorithm under fairly general and mild … Read more

The Noncooperative Fixed Charge Transportation Problem

We introduce the noncooperative fixed charge transportation problem (NFCTP), which is a game-theoretic extension of the fixed charge transportation problem. In the NFCTP, competing players solve coupled fixed charge transportation problems simultaneously. Three versions of the NFCTP are discussed and compared, which differ in their treatment of shared social costs. This may be used from … Read more

First-Order Algorithms Converge Faster than (1/k)$ on Convex Problems

It is well known that both gradient descent and stochastic coordinate descent achieve a global convergence rate of $O(1/k)$ in the objective value, when applied to a scheme for minimizing a Lipschitz-continuously differentiable, unconstrained convex function. In this work, we improve this rate to $o(1/k)$. We extend the result to proximal gradient and proximal coordinate … Read more

Adaptive Large Neighborhood Search for Mixed Integer Programming

Large Neighborhood Search (LNS) heuristics are among the most powerful but also most expensive heuristics for mixed integer programs (MIP). Ideally, a solver learns adaptively which LNS heuristics work best for the MIP problem at hand in order to concentrate its limited computational budget. To this end, this work introduces Adaptive Large Neighborhood Search (ALNS) … Read more

A stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs

We propose a stochastic approximation method for approximating the efficient frontier of chance-constrained nonlinear programs. Our approach is based on a bi-objective viewpoint of chance-constrained programs that seeks solutions on the efficient frontier of optimal objective value versus risk of constraint violation. To this end, we construct a reformulated problem whose objective is to minimize … Read more

Generating irreducible copositive matrices using the stable set problem

In this paper it is considered how graphs can be used to generate copositive matrices, and necessary and sufficient conditions are given for these generated matrices to then be irreducible with respect to the set of positive semidefinite plus nonnegative matrices. This is done through combining the well known copositive formulation of the stable set … Read more

An efficient adaptive accelerated inexact proximal point method for solving linearly constrained nonconvex composite problems

This paper proposes an efficient adaptive variant of a quadratic penalty accelerated inexact proximal point (QP-AIPP) method proposed earlier by the authors. Both the QP-AIPP method and its variant solve linearly constrained nonconvex composite optimization problems using a quadratic penalty approach where the generated penalized subproblems are solved by a variant of the underlying AIPP … Read more

A faster FPTAS for counting two-rowed contingency tables

In this paper we provide a deterministic fully polynomial time approximation scheme (FPTAS) for counting two-rowed contingency tables that is faster than any either deterministic or randomized approximation scheme for this problem known to date. Our FPTAS is derived via a somewhat sophisticated usage of the method of K-approximation sets and functions introduced by Halman … Read more