Constraint Qualifications for Karush-Kuhn-Tucker Conditions in Constrained Multiobjective Optimization

The notion of a normal cone of a given set is paramount in optimization and variational analysis. In this work, we give a definition of a multiobjective normal cone which is suitable for studying optimality conditions and constraint qualifications for multiobjective optimization problems. A detailed study of the properties of the multiobjective normal cone is … Read more

Distribution-free Algorithms for Learning Enabled Optimization with Non-parametric Estimation

This paper studies a fusion of concepts from stochastic optimization and non-parametric statistical learning, in which data is available in the form of covariates interpreted as predictors and responses. Such models are designed to impart greater agility, allowing decisions under uncertainty to adapt to the knowledge of the predictors (leading indicators). Specialized algorithms can be … Read more

On optimality conditions for nonlinear conic programming

Sequential optimality conditions have played a major role in proving stronger global convergence results of numerical algorithms for nonlinear programming. Several extensions have been described in conic contexts, where many open questions have arisen. In this paper, we present new sequential optimality conditions in the context of a general nonlinear conic framework, which explains and … Read more

Testing Copositivity via Mixed-Integer Linear Programming

We describe a simple method to test if a given matrix is copositive by solving a single mixed-integer linear programming (MILP) problem. This methodology requires no special coding to implement and takes advantage of the computational power of modern MILP solvers. Numerical experiments demonstrate that the method is robust and efficient. CitationDept. of Business Analytics, … Read more

The two-echelon location-routing problem with time windows: Formulation, branch-and-price, and clustering

In this study, we consider the two-echelon location-routing problem with time windows (2E-LRPTW) to address the strategic and tactical decisions of the urban freight transportation. In the rst echelon, freights are delivered from city distribution centers (CDCs) to intermediate facilities, called satellites, in large batches. In the second echelon, goods are consolidated into smaller vehicles … Read more

Some heuristic methods for the p-median problem with maximum distance constraints. Application to a bi-objective problem.

In this work we study the p-median problem with maximum distance constraints (PMPDC) which is a variant of the classical p-median problem (PMP). First of all, we provide some different formulations for (PMPDC) because the heuristics procedures for the (PMPDC) with a formulation based on the approach that modifies the distance matrix that leads to … Read more

Computing mixed strategies equilibria in presence of switching costs by the solution of nonconvex QP problems

In this paper we address a game theory problem arising in the context of network security. In traditional game theory problems, given a defender and an attacker, one searches for mixed strategies which minimize a linear payoff functional. In the problem addressed in this paper an additional quadratic term is added to the minimization problem. … Read more

Properties of the delayed weighted gradient method

The delayed weighted gradient method, recently introduced in [13], is a low-cost gradient-type method that exhibits a surprisingly and perhaps unexpected fast convergence behavior that competes favorably with the well-known conjugate gradient method for the minimization of convex quadratic functions. In this work, we establish several orthogonality properties that add understanding to the practical behavior … Read more