An Exact Method for Assortment Optimization under the Nested Logit Model

We study the problem of finding an optimal assortment of products maximizing the expected revenue, in which customer preferences are modeled using a Nested Logit choice model. This problem is known to be polynomially solvable in a specific case and NP-hard otherwise, with only approximation algorithms existing in the literature. For the NP-hard cases, we … Read more

A Reformulation-Linearization Technique for Optimization over Simplices

We study non-convex optimization problems over simplices. We show that for a large class of objective functions, the convex approximation obtained from the Reformulation-Linearization Technique (RLT) admits optimal solutions that exhibit a sparsity pattern. This characteristic of the optimal solutions allows us to conclude that (i) a linear matrix inequality constraint, which is often added … Read more

Stochastic Inventory Routing with Time-based Shipment Consolidation

Inspired by the retail industry, we introduce a fundamentally new approach towards stochastic inventory routing by replenishing retailers from a central warehouse using a time-based shipment consolidation policy. Such a time-based dispatching policy, where retailers facing stochastic demand are repetitively replenished at fixed times, is essential in practice. It allows for easy incorporation with dependent … Read more

The Dynamic Freight Routing Problem for Less-than-Truckload Carriers

Less-than-Truckload (LTL) carriers transport freight shipments from origins to destinations by consolidating freight using a network of terminals. As daily freight quantities are uncertain, carriers dynamically adjust planned freight routes on the day of operations. We introduce the Dynamic Freight Routing Problem (DFRP) and model this problem as a Markov Decision Process (MDP). To overcome … Read more

Graph Recovery From Incomplete Moment Information

We investigate a class of moment problems, namely recovering a measure supported on the graph of a function from partial knowledge of its moments, as for instance in some problems of optimal transport or density estimation. We show that the sole knowledge of first degree moments of the function, namely linear measurements, is sufficient to … Read more

LMBOPT — a limited memory method for bound-constrained optimization

Recently, Neumaier and Azmi gave a comprehensive convergence theory for a generic algorithm for bound constrained optimization problems with a continuously differentiable objective function. The algorithm combines an active set strategy with a gradient-free line search CLS along a piecewise linear search path defined by directions chosen to reduce zigzagging. This paper describes LMBOPT, an … Read more

Discrete Multi-Module Capacitated Lot-Sizing Problems with Multiple Items

We study single-item discrete multi-module capacitated lot-sizing problems where the amount produced in each time period is equal to the summation of binary multiples of the capacities of n available different modules (or machines). For fixed n≥2, we develop fixed-parameter tractable (polynomial) exact algorithms that generalize the algorithms of van Vyve (2007) for n=1. We … Read more

Stochastic Decomposition Method for Two-Stage Distributionally Robust Optimization

In this paper, we present a sequential sampling-based algorithm for the two-stage distributionally robust linear programming (2-DRLP) models. The 2-DRLP models are defined over a general class of ambiguity sets with discrete or continuous probability distributions. The algorithm is a distributionally robust version of the well-known stochastic decomposition algorithm of Higle and Sen (Math. of … Read more

Strong Evaluation Complexity of An Inexact Trust-Region Algorithm for Arbitrary-Order Unconstrained Nonconvex Optimization

A trust-region algorithm using inexact function and derivatives values is introduced for solving unconstrained smooth optimization problems. This algorithm uses high-order Taylor models and allows the search of strong approximate minimizers of arbitrary order. The evaluation complexity of finding a $q$-th approximate minimizer using this algorithm is then shown, under standard conditions, to be $\mathcal{O}\big(\min_{j\in\{1,\ldots,q\}}\epsilon_j^{-(q+1)}\big)$ … Read more

A Parallel Hub-and-Spoke System for Large-Scale Scenario-Based Optimization Under Uncertainty

Efficient solution of stochastic programming problems generally requires the use of parallel computing resources. Here, we describe the open source package mpi-sppy, in which efficient and scalable parallelization is a central feature. We describe the overall architecture and provide computational examples and results showing scalability to the largest instances that we know of for the … Read more