On the Convergence of Projected Alternating Maximization for Equitable and Optimal Transport

This paper studies the equitable and optimal transport (EOT) problem, which has many applications such as fair division problems and optimal transport with multiple agents etc. In the discrete distributions case, the EOT problem can be formulated as a linear program (LP). Since this LP is prohibitively large for general LP solvers, Scetbon \etal \cite{scetbon2021equitable} … Read more

The equilateral small octagon of maximal width

A small polygon is a polygon of unit diameter. The maximal width of an equilateral small polygon with $n=2^s$ vertices is not known when $s \ge 3$. This paper solves the first open case and finds the optimal equilateral small octagon. Its width is approximately $3.24\%$ larger than the width of the regular octagon: $\cos(\pi/8)$. … Read more

Regularized Step Directions in Conjugate Gradient Minimization for Machine Learning

Conjugate gradient minimization methods (CGM) and their accelerated variants are widely used in machine learning applications. We focus on the use of cubic regularization to improve the CGM direction independent of the steplength (learning rate) computation. Using Shanno’s reformulation of CGM as a memoryless BFGS method, we derive new formulas for the regularized step direction, … Read more

Sparse Plus Low Rank Matrix Decomposition: A Discrete Optimization Approach

We study the Sparse Plus Low Rank decomposition problem (SLR), which is the problem of decomposing a corrupted data matrix D into a sparse matrix Y containing the perturbations plus a low rank matrix X. SLR is a fundamental problem in Operations Research and Machine Learning arising in many applications such as data compression, latent … Read more

Comparing Solution Paths of Sparse Quadratic Minimization with a Stieltjes Matrix

This paper studies several solution paths of sparse quadratic minimization problems as a function of the weighing parameter of the bi-objective of estimation loss versus solution sparsity. Three such paths are considered: the “L0-path” where the discontinuous L0-function provides the exact sparsity count; the “L1-path” where the L1-function provides a convex surrogate of sparsity count; … Read more

Projection Robust Wasserstein Barycenters

Collecting and aggregating information from several probability measures or histograms is a fundamental task in machine learning. One of the popular solution methods for this task is to compute the barycenter of the probability measures under the Wasserstein metric. However, approximating the Wasserstein barycenter is numerically challenging because of the curse of dimensionality. This paper … Read more

A Riemannian Block Coordinate Descent Method for Computing the Projection Robust Wasserstein Distance

The Wasserstein distance has become increasingly important in machine learning and deep learning. Despite its popularity, the Wasserstein distance is hard to approximate because of the curse of dimensionality. A recently proposed approach to alleviate the curse of dimensionality is to project the sampled data from the high dimensional probability distribution onto a lower-dimensional subspace, … Read more

Confidence Interval Software for Multi-stage Stochastic Programs

When the uncertainty is explicitly modeled in an optimization problem, it is often necessary to use samples to compute a solution, which gives rise to a need to compute confidence intervals around the objective function value that is obtained. In this paper we describe software that implements well-known methods for two stage problems and we … Read more

Interval Scheduling with Economies of Scale

Motivated by applications in cloud computing, we study interval scheduling problems exhibiting economies of scale. An instance is given by a set of jobs, each with start time, end time, and a function representing the cost of scheduling a subset of jobs on the same machine. Specifically, we focus on the max-weight function and non-negative, … Read more

Dual descent ALM and ADMM

In this paper we propose and investigate a new class of dual updates within the augmented Lagrangian framework, where the key feature is to reverse the update direction in the traditional dual ascent. When the dual variable is further scaled by a fractional number, we name the resulting scheme scaled dual descent (SDD), and otherwise, … Read more