An integrated vertiport placement model considering vehicle sizing and queuing

The increasing levels of congestion and infrastructure costs in cities have created a need for more intelligent transport systems. Urban Air Mobility (UAM) offers a solution by introducing intra-urban aerial transport to overcome the existing congested infrastructure. The performance of UAM systems are highly dependent on vertiport locations, vehicle sizing and infrastructure specifications. This study … Read more

Optimisation of Step-free access Infrastructure in London Underground considering Borough Economic Inequality

Public transport is the enabler of social and economic development, as it allows the movement of people and provides access to opportunities that otherwise might have been unattainable. Access to public transport is a key aspect of social equity, with step-free access improving the inclusivity of the transport network in particular for mobility impaired population … Read more

Demand modelling and optimal vertiport placement for airport-purposed eVTOL services

Recent technological advances have only recently made Urban Air Mobility feasible as a realistic alternative to existing transport modes. Despite the growing interest, this disruptive service requires accurate strategic investments to ensure its viability in the short- and long-term. While airports have been identified as potential sites for vertiports, extending operations to the urban rest … Read more

European Gas Infrastructure Expansion Planning: An Adaptive Robust Optimization Approach

The European natural gas market is undergoing fundamental changes, fostering uncertainty regarding both supply and demand. This uncertainty is concentrated in the value of strategic infrastructure investments, e.g., projects of common interest supported by European Union public funds, to safeguard security of supply. This paper addresses this matter by suggesting an adaptive robust optimization framework … Read more

Global Complexity Bound of a Proximal ADMM for Linearly-Constrained Nonseperable Nonconvex Composite Programming

This paper proposes and analyzes a dampened proximal alternating direction method of multipliers (DP.ADMM) for solving linearly-constrained nonconvex optimization problems where the smooth part of the objective function is nonseparable. Each iteration of DP.ADMM consists of: (ii) a sequence of partial proximal augmented Lagrangian (AL) updates, (ii) an under-relaxed Lagrange multiplier update, and (iii) a … Read more

Global Convergence of Algorithms Under Constant Rank Conditions for Nonlinear Second-Order Cone Programming

In [R. Andreani, G. Haeser, L. M. Mito, H. Ramírez C., Weak notions of nondegeneracy in nonlinear semidefinite programming, arXiv:2012.14810, 2020] the classical notion of nondegeneracy (or transversality) and Robinson’s constraint qualification have been revisited in the context of nonlinear semidefinite programming exploiting the structure of the problem, namely, its eigendecomposition. This allows formulating the … Read more

Tight bounds on the maximal area of small polygons: Improved Mossinghoff polygons

A small polygon is a polygon of unit diameter. The maximal area of a small polygon with $n=2m$ vertices is not known when $m \ge 7$. In this paper, we construct, for each $n=2m$ and $m\ge 3$, a small $n$-gon whose area is the maximal value of a one-variable function. We show that, for all … Read more

An Accelerated Inexact Dampened Augmented Lagrangian Method for Linearly-Constrained Nonconvex Composite Optimization Problems

This paper proposes and analyzes an accelerated inexact dampened augmented Lagrangian (AIDAL) method for solving linearly-constrained nonconvex composite optimization problems. Each iteration of the AIDAL method consists of: (i) inexactly solving a dampened proximal augmented Lagrangian (AL) subproblem by calling an accelerated composite gradient (ACG) subroutine; (ii) applying a dampened and under-relaxed Lagrange multiplier update; … Read more

A Preconditioned Iterative Interior Point Approach to the Conic Bundle Subproblem

The conic bundle implementation of the spectral bundle method for large scale semidefinite programming solves in each iteration a semidefinite quadratic subproblem by an interior point approach. For larger cutting model sizes the limiting operation is collecting and factorizing a Schur complement of the primal-dual KKT system. We explore possibilities to improve on this by … Read more

A Graph-based Decomposition Method for Convex Quadratic Optimization with Indicators

In this paper, we consider convex quadratic optimization problems with indicator variables when the matrix Q defining the quadratic term in the objective is sparse. We use a graphical representation of the support of Q, and show that if this graph is a path, then we can solve the associated problem in polynomial time. This … Read more