Hospital-wide Inpatient Flow Optimization

An ideal that supports quality and delivery of care is to have hospital operations that are coordinated and optimized across all services in real-time. As a step toward this goal, we propose a multistage adaptive robust optimization approach combined with machine learning techniques. Informed by data and predictions, our framework unifies the bed assignment process … Read more

Hölder Gradient Descent and Adaptive Regularization Methods in Banach Spaces for First-Order Points

This paper considers optimization of smooth nonconvex functionals in smooth infinite dimensional spaces. A Hölder gradient descent algorithm is first proposed for finding approximate first-order points of regularized polynomial functionals. This method is then applied to analyze the evaluation complexity of an adaptive regularization method which searches for approximate first-order points of functionals with $\beta$-H\”older … Read more

Accelerated derivative-free nonlinear least-squares applied to the estimation of Manning coefficients

A general framework for solving nonlinear least squares problems without the employment of derivatives is proposed in the present paper together with a new general global convergence theory. With the aim to cope with the case in which the number of variables is big (for the standards of derivative-free optimization), two dimension-reduction procedures are introduced. … Read more

Integrated lot-sizing and one-dimensional cutting stock problem with usable leftovers

This paper addresses the integration of the lot-sizing problem and the one-dimensional cutting stock problem with usable leftovers (LSP-CSPUL). This integration aims to minimize the cost of cutting items from objects available in stock, allowing the bringing forward production of items that have known demands in a future planning horizon. The generation of leftovers, that … Read more

The Integrated Lot Sizing and Cutting Stock Problem in an Automotive Spring Factory

In this paper, a manufacturer of automotive springs is studied in order to reduce inventory costs and losses in the steel bar cutting process. For that, a mathematical model is proposed, focused on the short term decisions of the company, and considering parallel machines and operational constraints, besides the demand, inventory costs and limits for … Read more

Robust Interior Point Method for Quantum Key Distribution Rate Computation

While the security proof method for quantum key distribution, QKD, based on the numerical key rate calculation problem, is powerful in principle, the practicality of the method is limited by computational resources and the efficiency of the underlying algorithm for convex optimization. We derive a stable reformulation of the convex nonlinear semidefinite programming, SDP, model … Read more

Algorithms for Difference-of-Convex (DC) Programs Based on Difference-of-Moreau-Envelopes Smoothing

In this paper we consider minimization of a difference-of-convex (DC) function with and without linear constraints. We first study a smooth approximation of a generic DC function, termed difference-of-Moreau-envelopes (DME) smoothing, where both components of the DC function are replaced by their respective Moreau envelopes. The resulting smooth approximation is shown to be Lipschitz differentiable, … Read more

Penetration depth between two convex polyhedra: An efficient global optimization approach

During the detailed design phase of an aerospace program, one of the most important consistency checks is to ensure that no two distinct objects occupy the same physical space. Since exact geometrical modeling is usually intractable, geometry models are discretized, which often introduces small interferences not present in the fully detailed model. In this paper, … Read more

A Proximal Quasi-Newton Trust-Region Method for Nonsmooth Regularized Optimization

We develop a trust-region method for minimizing the sum of a smooth term f and a nonsmooth term h, both of which can be nonconvex. Each iteration of our method minimizes apossibly nonconvex model of f+h in a trust region. The model coincides with f+h in value and subdifferential at the center. We establish global … Read more

Optimizing Driver Menus Under Stochastic Selection Behavior for Ridesharing and Crowdsourced Delivery

Peer-to-peer logistics platforms coordinate independent drivers to fulfill requests for last mile delivery and ridesharing. To balance demand-side performance with driver autonomy, a new methodology is created to provide drivers with a small but personalized menu of requests to choose from. This creates a Stackelberg game, in which the platform leads by deciding what menu … Read more