ALSO-X#: Better Convex Approximations for Distributionally Robust Chance Constrained Programs

This paper studies distributionally robust chance constrained programs (DRCCPs), where the uncertain constraints must be satisfied with at least a probability of a prespecified threshold for all probability distributions from the Wasserstein ambiguity set. As DRCCPs are often nonconvex and challenging to solve optimally, researchers have been developing various convex inner approximations. Recently, ALSO-X has … Read more

Fair and Risk-averse Urban Air Mobility Resource Allocation Under Uncertainties

Urban Air Mobility (UAM) is an emerging air transportation mode to alleviate the ground traffic burden and achieve zero direct aviation emissions. Due to the potential economic scaling effects, the UAM traffic flow is expected to increase dramatically once implemented, and its market can be substantially large. To be prepared for the era of UAM, … Read more

Recovering Dantzig-Wolfe Bounds by Cutting Planes

Dantzig-Wolfe (DW) decomposition is a well-known technique in mixed-integer programming for decomposing and convexifying constraints to obtain potentially strong dual bounds. We investigate Fenchel cuts that can be derived using the DW decomposition algorithm and show that these cuts can provide the same dual bounds as DW decomposition. We show that these cuts, in essence, … Read more

On an iteratively reweighted linesearch based algorithm for nonconvex composite optimization

In this paper we propose a new algorithm for solving a class of nonsmooth nonconvex problems, which is obtained by combining the iteratively reweighted scheme with a finite number of forward–backward iterations based on a linesearch procedure. The new method overcomes some limitations of linesearch forward–backward methods, since it can be applied also to minimize … Read more

A Novel Stepsize for Gradient Descent Method

In this paper, we propose a novel stepsize for the classical gradient descent scheme to solve unconstrained nonlinear optimization problems. We are concerned with the convex and smooth objective without the globally Lipschitz gradient condition. Our new method just needs the locally Lipschitz gradient but still gets the rate $O(\frac{1}{k})$ of $f(x^k)-f_*$ at most. As … Read more

Prescriptive price optimization using optimal regression trees

This paper focuses on prescriptive price optimization, which derives the optimal pricing strategy that maximizes future revenue or profit by using demand forecasting models for multiple products. Prescriptive price optimization requires accurate demand forecasting models because the accuracy of these models has a direct impact on pricing strategies aimed at increasing revenue or profit. However, … Read more

Efficient Discovery of Cost-effective Policies in Sequential, Medical Decision-Making Problems

Cost-effectiveness analysis is widely used by policymakers to prioritize interventions that improve a population’s health. Net monetary benefit (NMB) is a metric used for the comparison of medical care strategies, which converts an intervention’s health-benefits to monetary value using the willingness to pay (WTP) as the exchange rate. There is no universally accepted value for … Read more

Gas Transport Network Optimization: PDE-Constrained Models

The optimal control of gas transport networks was and still is a very important topic for modern economies and societies. Accordingly, a lot of research has been carried out on this topic during the last years and decades. Besides mixed-integer aspects in gas transport network optimization, one of the main challenges is that a physically … Read more

Generating balanced workload allocations in hospitals

As pressure on healthcare systems continues to increase, it is becoming more and more important for hospitals to properly manage the high workload levels of their staff. Ensuring a balanced workload allocation between various groups of employees in a hospital has been shown to contribute considerably towards creating sustainable working conditions. However, allocating work to … Read more