Gas Transport Network Optimization: Mixed-Integer Nonlinear Models

Although modern societies strive towards energy systems that are entirely based on renewable energy carriers, natural gas is still one of the most important energy sources. This became even more obvious in Europe with Russia’s 2022 war against the Ukraine and the resulting stop of gas supplies from Russia. Besides that it is very important … Read more

A Fully Adaptive DRO Multistage Framework Based on MDR for Generation Scheduling under Uncertainty

The growing proliferation of wind power into the power grid achieves a low-cost sustainable electricity supply while introducing technical challenges with associated intermittency. This paper proposes a fully adaptive distributionally robust multistage framework based on mixed decision rules (MDR) for generation scheduling under uncertainty to adapt wind power respecting non-anticipativity in quick-start unit status decision … Read more

Barzilai-Borwein-like rules in proximal gradient schemes for ℓ1−regularized problems

We propose a novel steplength selection rule in proximal gradient methods for minimizing the sum of a differentiable function plus an ℓ1-norm penalty term. The proposed rule modifies one of the classical Barzilai-Borwein steplength, extending analogous results obtained in the context of gradient projection methods for constrained optimization. We analyze the spectral properties of the … Read more

A Semismooth Conjugate Gradients Method — Theoretical Analysis

In large scale applications, deterministic and stochastic variants of Cauchy’s steepest descent method are widely used for the minimization of objectives that are only piecewise smooth. In this paper we analyse a  deterministic descent method based on the generalization of rescaled conjugate gradients proposed by Philip Wolfe in 1975 for objectives that are convex. Without … Read more

The Jordan algebraic structure of the rotated quadratic cone

In this paper, we look into the rotated quadratic cone and analyze its algebraic structure. We construct an algebra associated with this cone and show that this algebra is a Euclidean Jordan algebra (EJA) with a certain inner product. We also demonstrate some spectral and algebraic characteristics of this EJA. The rotated quadratic cone is … Read more

The min-Knapsack Problem with Compactness Constraints and Applications in Statistics

In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper we introduce an extension of the min-Knapsack problem with additional … Read more

Minimizing the difference of convex and weakly convex functions via bundle method

We consider optimization problems with objective and constraint being the difference of convex and weakly convex functions. This framework covers a vast family of nonsmooth and nonconvex optimization problems, particularly those involving certain classes of composite and nonconvex value functions. We investigate several stationary conditions and extend the proximal bundle algorithm of [van Ackooij et … Read more

A Newton-CG based barrier-augmented Lagrangian method for general nonconvex conic optimization

\(\) In this paper we consider finding an approximate second-order stationary point (SOSP) of general nonconvex conic optimization that minimizes a twice differentiable function subject to nonlinear equality constraints and also a convex conic constraint. In particular, we propose a Newton-conjugate gradient (Newton-CG) based barrier-augmented Lagrangian method for finding an approximate SOSP of this problem. … Read more

Analyzing Inexact Hypergradients for Bilevel Learning

Estimating hyperparameters has been a long-standing problem in machine learning. We consider the case where the task at hand is modeled as the solution to an optimization problem. Here the exact gradient with respect to the hyperparameters cannot be feasibly computed and approximate strategies are required. We introduce a unified framework for computing hypergradients that … Read more

Two-stage and Lagrangian Dual Decision Rules for Multistage Adaptive Robust Optimization

In this work, we design primal and dual bounding methods for multistage adaptive robust optimization (MSARO) problems motivated by two decision rules rooted in the stochastic programming literature. From the primal perspective, this is achieved by applying decision rules that restrict the functional forms of only a certain subset of decision variables resulting in an … Read more