Fast approximate solution of large dense linear programs

We show how random projections can be used to solve large-scale dense linear programs approximately. This is a new application of techniques which are now fairly well known in probabilistic algorithms, but have never yet been systematically applied to the fundamental class of Linear Programming. We develop the necessary theoretical framework, and show that this … Read more

Open research areas in distance geometry

Distance Geometry is based on the inverse problem that asks to find the positions of points, in a Euclidean space of given dimension, that are compatible with a given set of distances. We briefly introduce the field, and discuss some open and promising research areas. ArticleDownload View PDF

New error measures and methods for realizing protein graphs from distance data

The interval Distance Geometry Problem (iDGP) consists in finding a realization in R^K of a simple undirected graph G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. Our aim is to determine … Read more

Bilevel mixed-integer linear programs and the zero forcing set

We study a class of bilevel binary linear programs with lower level variables in the upper-level constraints. Under certain assumptions, we prove that the problem can be reformulated as a single-level binary linear program, and propose a finitely terminating cut generation algorithm to solve it. We then relax the assumptions by means of a general … Read more

The Power Edge Set problem

The automated real time control of an electrical network is achieved through the estimation of its state using Phasor Measurement Units (PMUs). Given an undirected graph representing the network, we study the problem of finding the minimum number of PMUs to place on the edges such that the graph is fully observed. This problem is … Read more

Divisive heuristic for modularity density maximization

In this paper we consider a particular method of clustering for graphs, namely the modularity density maximization. We propose a hierarchical divisive heuristic which works by splitting recursively a cluster into two new clusters by maximizing the modularity density, and we derive four reformulations for the mathematical programming model used to obtain the optimal splitting. … Read more

A multiplicative weights update algorithm for MINLP

We discuss an application of the well-known Multiplicative Weights Update (MWU) algorithm to non-convex and mixed-integer nonlinear programming. We present applications to: (a) the distance geometry problem, which arises in the positioning of mobile sensors and in protein conformation; (b) a hydro unit commitment problem arising in the energy industry, and (c) a class of … Read more

Using the Johnson-Lindenstrauss lemma in linear and integer programming

The Johnson-Lindenstrauss lemma allows dimension reduction on real vectors with low distortion on their pairwise Euclidean distances. This result is often used in algorithms such as $k$-means or $k$ nearest neighbours since they only use Euclidean distances, and has sometimes been used in optimization algorithms involving the minimization of Euclidean distances. In this paper we … Read more

Six mathematical gems from the history of Distance Geometry

This is a partial account of the fascinating history of Distance Geometry. We make no claim to completeness, but we do promise a dazzling display of beautiful, elementary mathematics. We prove Heron’s formula, Cauchy’s theorem on the rigidity of polyhedra, Cayley’s generalization of Heron’s formula to higher dimensions, Menger’s characterization of abstract semi-metric spaces, a … Read more

Discretization vertex orders in distance geometry

When a weighted graph is an instance of the Distance Geometry Problem (DGP), certain types of vertex orders (called discretization orders) allow the use of a very efficient, precise and robust discrete search algorithm (called Branch-and-Prune). Accordingly, finding such orders is critically important in order to solve DGPs in practice. We discuss three types of … Read more